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With the results of many different genome-sequencing projects, hundreds of genomes 
from all branches of species have become available. Currently, one important task is 
to search for ways that can explain the organization and function of each genome. 
Data mining algorithms become very useful to extract the patterns from the data and 
to present it in such a way that can better our understanding of the structure, relation, 
and function of the subjects. The purpose of this book is to illustrate the data mining 
algorithms and their applications in genomics, with frontier case studies based on the 
recent and current works of the author and colleagues at the University of Hong Kong 
and the Oxford University Computing Laboratory, University of Oxford.

It is estimated that there exist about 10 million single-nucleotide polymorphisms 
(SNPs) in the human genome. The complete screening of all the SNPs in a genomic 
region becomes an expensive undertaking. In Chapter 4, it is illustrated how the 
problem of selecting a subset of informative SNPs (tag SNPs) can be formulated as 
a hierarchical clustering problem with the development of a suitable similarity 
function for measuring the distances between the clusters. The proposed algorithm 
takes account of both functional and linkage disequilibrium information with the 
asymmetry thresholds for different SNPs, and does not have the difficulties of the 
block-detecting methods, which can result in different block boundaries. 
Experimental results supported that the algorithm is cost-effective for tag-SNP 
selection. More compact clusters can be produced with the algorithm to improve 
the efficiency of association studies.

There are several different advantages of the linkage disequilibrium maps (LD 
maps) for genomic analysis. In Chapter 5, the construction of the LD mapping is 
formulated as a non-parametric constrained unidimensional scaling problem, which 
is based on the LD information among the SNPs. This is different from the previous 
LD map, which is derived from the given Malecot model. Two procedures, one with 
the formulation as the least squares problem with nonnegativity and the other with 
the iterative algorithms, have been considered to solve this problem. The proposed 
maps can accommodate recombination events that have accumulated. Application 
of the proposed LD maps for human genome is presented. The linkage disequilib-
rium patterns in the LD maps can provide the genomic information like the hot and 
cold recombination regions, and can facilitate the study of recent selective sweeps 
across the human genome.

Preface

vii



viii Preface

Microarray has been the most widely used tool for assessing differences in 
mRNA abundance in the biological samples. Previous studies have successfully 
employed principal components analysis-neural network as a classifier of gene 
types, with continuous inputs and discrete outputs. In Chapter 6, it is shown how to 
develop a hybrid intelligent system for testing the predictability of gene expression 
time series with PCA and NN components on a continuous numerical inputs and 
outputs basis. Comparisons of results support that our approach is a more realistic 
model for the gene network from a continuous prospective.

In this book, data mining algorithms have been illustrated for solving some 
frontier problems in genomic analysis. The book is organized as follows. In Chapter 
1, it is the brief introduction to the data mining algorithms, the advances in the 
technology and the outline of the recent works for the genomic analysis. In Chapter 
2, we describe about the data mining algorithms generally. In Chapter 3, we 
describe about the recent advances in genomic experiment techniques. In Chapter 
4, we present the first case study of CLUSTAG & WCLUSTAG, which are tailor-
made hierarchical clustering and graph algorithms for tag-SNP selection. In 
Chapter 5, the second case study of the non-parametric method of constrained uni-
dimensional scaling for constructions of linkage disequilibrium maps is presented. 
In Chapter 6, we present the last case study of building of hybrid PCA-NN algo-
rithms for continuous microarray time series. Finally, we give the conclusions and 
some future works based on the case studies in Chapter 7.

Topics covered in the book include Genomic Techniques, Single Nucleotide 
Polymorphisms, Disease Studies, HapMap Project, Haplotypes, Tag-SNP Selection, 
Linkage Disequilibrium Map, Gene Regulatory Networks, Dimension Reduction, 
Feature Selection, Feature Extraction, Principal Component Analysis, Independent 
Component Analysis, Machine Learning Algorithms, Hybrid Intelligent Techniques, 
Clustering Algorithms, Graph Algorithms, Numerical Optimization Algorithms, Data 
Mining Software Comparison, Medical Case Studies, Bioinformatics Projects, and 
Medical Applications etc. The book can serve as a reference work for researchers and 
graduate students working on data mining algorithms and applications in genomics.
The author is grateful for the advice and support of Dr. Vasile Palade throughout 
the author’s research in Oxford University Computing Laboratory, University of 
Oxford, UK.

June 2008 Sio-Iong Ao
University of Oxford, UK
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Chapter 1
Introduction

This book is organized as follows. In this Chapter, it is the brief introduction to the 
data mining algorithms, the advances in the technology and the outline of the recent 
works for the genomic analysis. In the last section, we describe briefly about the 
three case studies of developing tailor-made data mining algorithms for genomic 
analysis. The contributions of these algorithms to the genomic analysis are also 
described briefly in that section and in more details in their respective case study 
chapters. In Chapter 2, we describe about the data mining algorithms generally. In 
Chapter 3, we describe about the recent advances in genomic experiment tech-
niques. In Chapter 4, we present the first case study of CLUSTAG & WCLUSTAG, 
which are tailor-made hierarchical clustering and graph algorithms for tag-SNP 
selection. In Chapter 5, the second case study of the non-parametric method of 
constrained unidimensional scaling for constructions of linkage disequilibrium 
maps is presented. In Chapter 6, we present the last case study of building of hybrid 
PCA-NN algorithms for continuous microarray time series. Finally, we give the 
conclusions and some future works based on the case studies in Chapter 7.

1.1 Data Mining Algorithms

1.1.1 Basic Definitions

Data mining algorithm has played an important role in the overall knowledge-
discovery process. It usually involves the following steps (Bergeron, 2003):

1. To select enough sample data form the sources.
2. To preprocess and clean the data, for removing errors and redundancies.
3. To transform or reduce the data to a space more suitable for data mining.
4. To implement the data mining algorithms.
5. To evaluate the mined data.
6. To present the evaluation results in a format/graph that can be understand easily.
7. To design new data queries for testing new hypotheses and return to step 1.

Sio-long Ao, Data Mining and Applications in Genomics, 1
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2 1 Introduction

The above procedure of the knowledge-discovery process is in fact an iterative 
process that involves feedback at each stage. These feedbacks can be made within 
the algorithms or, made by human experts. For example, if it is the preprocessing 
and cleaning of a microarray dataset that cause insufficient number of records, the 
researcher may need to re-formulate the selection and sampling requirement for 
larger number of records. In some worse cases, one may even need to increase the 
number of microarray experiments.

Not only helpful for large datasets, data mining algorithms can be applied for 
relatively small datasets too. For example, in a microarray experiment, which may 
only have a few subjects and a few hundred records for each subject, the data min-
ing algorithms can assist us to find out joint hypotheses, like the combination of 
several records. The algorithms can also search through more subjects, more 
records and more genomic regions, which may otherwise become much more 
labor-intensive or even infeasible to do it manually. Tailor-made data mining algo-
rithms are developed to serve these purposes in a fast and efficient way, as an alter-
native to manual searching.

1.1.2 Basic Data Mining Techniques

Different data mining algorithms like unsupervised learning (clustering), super-
vised learning (classification), regression, and machine learning techniques etc., 
can be employed to extract or mine meaningful patterns from the data (Bergeron, 
2003). Clustering algorithms can group data into similar groups without any pre-
defined classes, and we will discuss about its application for the genomic study in 
more details later. Classification involves the task of assigning class labels to dif-
ferent data records. The classification rule can be based on the minimum proximity 
to the center of a particular class etc. In regression methods, numerical values are 
assigned to the data, basing on some pre-defined statistical functions. A simple case 
is the linear regression of the form: y = mx + b. More complex functions like non-
linear functions can be adapted too, which may reflect the underlying properties of 
the data better than the simplified linear case.

In Chapter 2, we will describe about several groups of the basic data mining algo-
rithms. In the section of dimension reduction and transformation, we will talk about 
the feature selection, feature extraction methods like principal component analysis 
and independent component analysis etc. In the section of machine learning algo-
rithms, topics like logistic regression models, neural network models, fuzzy systems, 
ensemble methods, support vector machines and hybrid intelligent techniques etc. 
will be covered. Then, we will also talk about the clustering algorithms like hierarchical 
clustering, partition clustering spectral clustering, and their considerations. In the 
section of graph algorithms, topics like computer representations of graphs, breadth-
first search algorithms, and depth-first search algorithms will be covered. Chapter 2 
will conclude with the discussion of several popular numerical optimization algo-
rithms like steepest descent method, Newton’s method, sequential unconstrained 
minimization, reduced gradient methods, and interior-point methods.



1.1.3 Computational Considerations

Data mining algorithms are computational algorithms that can deal with a large 
amount of data, and, that are capable of solving complex problems. An algorithm 
is a precisely defined procedure for solving a well-defined problem (Salzberg et al., 
1998). In other words, an algorithm is a finite sequence of logical and mathematical 
instructions for the solution of a given well-defined problem (Foulds, 1991). A use-
ful algorithm has the following characteristics: finiteness, definiteness (without 
ambiguity), input, output and effectiveness. An algorithm can be specified with a 
word statement, a list of mathematical steps, a flow chart or a computational pro-
gram. A computational program refers to the embodiment of such an algorithm. 
During the algorithm designing for the problem solving, there are important factors 
that need thorough consideration. Among these, the computing time and memory 
space requirement are two major factors.

The speed of a computational algorithm can be measured by how many opera-
tions it needs to run. An operation is defined as a primitive machine-level instruc-
tion. Or, with some high-level abstraction, it can be defined as, for example, a single 
retrieval from the database etc. The definition depends on the nature of the problem 
for counting convenience. For example, in the protein comparison program BLAST, 
which requires the comparison of amino acids against each other, one operation 
may be defined as the comparing of one amino acid to another one. Then, one 
operation will require fetching two memory locations and using them as indices 
into a PAM matrix.

The number of operations required usually increases with the size of the input 
N. For example, in the sequence comparison, it will take longer to compute with 
longer sequence. In this sequence comparison case, we can set the input size N as 
the sum of the length of the sequences. For describing the computation time of an 
algorithm, we can say that it takes N units of time, or N 2, or maybe N 3 etc. With the 
concept of the operation and its counting with input size, we can have a machine-
independent comparison of the computational durations of different algorithms. 
The notations like O(N), O(N2) or O(N3) are usually used to denote the order of the 
number of operations an algorithm needs.

The complexity in the above paragraph refers to the maximum number of opera-
tion steps required by an algorithm, with the consideration of all possible problem 
instances of a given problem size. This is called the worst-case complexity. Another 
popular kind of complexity is the expected time complexity (average time complexity). 
For a given problem that is solved by two different algorithms, the complexities of 
these two algorithms can be different, for example the first algorithm with O(N) 
while the second algorithm with O(N 2). Then, the first algorithm is said to be more 
efficient than the second one.

The space requirement of an algorithm is also a function of the input size N. As 
an example, in the Smith-Waterman sequence comparison algorithm, a matrix of 
the two input sequences is built. Let N and M denote the sizes of these two 
sequences, the matrix is of size N x M, in which each entry is consisted of a number 
plus a pointer. We say that the space requirement of this algorithm is of order O(NM). 
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4 1 Introduction

Sometimes, it is possible to reduce the space requirement by scarifying the running 
time of the algorithm. For example, with an alternative programming of the Smith-
Waterman algorithm of about two times the original running time, the space 
requirement can be lower to O(N) (Waterman, 1995).

1.2 Advances in Genomic Techniques

The genomic analysis is concerned with the different properties and the variations of 
the genome, and it is usually in a scale much larger than the traditional genetic studies 
done before. There are different approaches for the genomic analysis, like the com-
parisons of gene order, codon usage bias, and GC-content etc. In genomic analysis, 
there have been advances in the technology for DNA sequencing, and, in the routine 
adoption of the DNA microarray technology for the analysis of gene expression 
profiles at the mRNA level (Lee and Lee, 2000). There have also been advances for 
the genotyping of single nucleotide polymorphisms in the human genome.

A collection of DNA of which an organism consists is called a genome (Pevsner, 
2003). It is the genome that contains the hereditary information of that organization. 
This term was first used by Professor Hans Winkler of University of Hamburg in 
1920 (PloS, 2005). The genome of an organism includes both the genes and the non-
coding sequences. Both the genes and the other DNA elements together define the 
genome’s identity. The sizes of the genomes can vary hugely among different species. 
For example, the smallest viruses have fewer than 10 genes, but in human genome, 
there are billions of base pair of DNA that encode tens of thousands genes.

With the results of many different genome-sequencing projects, hundreds of 
genomes from all branches of species have become available now. Nowadays, one 
important task is to search for methods that can explain each genome’s organization 
and function. This process will need algorithms and tools from computer science, 
statistics and mathematics etc.

The first viral genome of bacteriophage ϕ174 is completed by Fred Sanger and 
his colleagues (Sanger et al., 1977), and the first complete eukaryotic genome is 
sequenced by Goffeau in 1996 (Goffeau et al., 1996). The subject for this project is 
a yeast call Saccharomyces cerevisiae. A lot of efforts from over 600 researchers in 
100 laboratories are involved in order to obtain this genome. In the S. cerevisiae 
genome, there are about 13 Mb of DNA located in 16 different chromosomes. With 
the availability of the complete genome, Cherry et al. have unified the physical map 
with the genetic map (Cherry et al., 1997). The physical map can be obtained 
directly from DNA sequencing, while the genetic map by recombination analysis, 
which we will discuss in more details later.

The complete collection of DNA in Homo sapiens is called the human genome. 
The variations in the human genome can explain the differences between people, 
like the physical feature differences and the different disease states. The sequencing 
of the human genome has been achieved with the cooperation from the interna-
tional community through the International Human Genome Sequencing Consortium 



(IHGSC). On 15th February 2001, IHGSC reported the first draft version of the 
human genome (IHGSC, 2001). Nearly at the same time, Venter and colleagues 
(Venter et al., 2001) have reported their own Celera Genomics version of the draft 
sequence. As a brief summary of the sequencing results, it is estimated that there 
are about 30,000 to 40,000 genes in the human genome. And more than 98% of the 
genome is of the non-coding parts.

The fundamental unit for the human DNA is called the base. There are more than 
6 billion of these chemical bases in the 23 pairs of chromosomes of the human 
genome. A specific position in the genome is called a locus (Sham, 1998). As said 
above, a genetic polymorphism refers to the existence of different DNA sequences 
at the same locus among a population. These different sequences are called alleles. 
In each base of the sequence, there can be any one of the four different chemical 
entities, which are adenine (A), cytosine (C), guanine (G) and thymine (T). Inside 
these genomic sequences, there contain the information about our physical traits, 
our resistance power to diseases and our responses to outside chemicals.

1.2.1 Single Nucleotide Polymorphisms (SNPs)

In most of the regions of any two human chromosomes, there exists identical 
sequencing. Nevertheless, there are regions of different sequencing. The differences 
in sequences can be grouped into large-scale chromosome abnormalities and small-
scale mutations. The abnormalities include the loss or gain of chromosomes, and 
the breaking down and rejoining of chromatids. This can be found in tumor cells 
for example. The smaller-scale mutations can be further classified into: base sub-
stitutions, deletions or insertions (Taylor et al., 2005).

The most common type of genetic variations is that of differences in individual 
bases. They are called single nucleotide polymorphisms (SNPs, pronounced as 
“snips”). The HapMap project is to genotype the single nucleotide polymorphisms 
in the whole human genome (HapMap, 2005). The single nucleotide polymor-
phisms (SNP) is a common type of this small-scale mutation, and is estimated to 
occur once every 100–300 base pairs (bp) and the total number of SNPs identified 
reached more than 1.4 million. As an illustrative example, let’s consider the five 
chromosome segments below:

1. ATCAAGCCA
2. ATCAAGCAA
3. ATCATGCCA
4. ATCAAGCCA

We can see that in the fifth and eighth columns of the sequences, there exist some 
single nucleotide polymorphisms. These columns of SNPs are bold and the under-
lying minor variants are also underlined. For example, in the fifth base, sequences 
1, 2 and 4 have the base of the adenine (A). But, in the sequence 3, the fifth base is 
a thymine (T) and is called a minor variant. Similarly, in the eighth base, sequences 
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1, 3 and 4 have the base of the cytosine (C), but that of the sequence 2 is of the 
adenine (A).

In the above example, we can also decide the tag SNPs that are needed. For the 
first, second, third, forth, sixth, seventh, and ninth bases, the corresponding building 
units are the same for each of the four sequences. For example, in the first base, all 
of them are the adenine (A). They are just the ordinary segments without any 
observable mutations. As said, the fifth and the ninth bases are of SNPs. In the fifth 
base, the minor variant (a T) occurs in the sequence 3, and in the ninth base, the 
minor variant (an A) occurs in the sequence 2. We can see that the distributions of 
the minor variants in these two bases are not similar to each other, so all these two 
SNPs are needed to be genotyped for medical analysis. Now, assume that we also 
have the tenth base, as followed:

1. ATCAAGCCAA
2. ATCAAGCAAT
3. ATCATGCCAA
4. ATCAAGCCAA

We can observe that the tenth base is a SNP and the minor variant occurs on the 
chromosome 2. The distribution of the minor variant of the eighth base and the 
tenth base are the same. Thus, one SNP (either the eighth base or the tenth base) is 
enough for representing these two SNPs. For example, assume that a disease T is 
caused by the minor variant T in the tenth base. Thus, sequence 2 will carry the 
disease T. If we know the disease distributions among the sequences instead and 
would like to know the potential variants, then, the results of genotyping the eighth 
base and the tenth base are the same. If we genotype the eighth base, we can see 
that the minor variant A occurs in the sequence 2 and that it is the sequence 2 that 
has the disease T. So we can identify that any member within the group (the eighth 
base or the tenth base) can be the variant for the disease. If we genotype the tenth 
base, we can have the same observations. In this example, we can see that we can 
save the genotyping cost by one-third, while we can still get the same association 
results as that of genotyping all SNPs.

1.2.2 Disease Studies with SNPs

As many common diseases are influenced by multiple genes and other environmental 
factors as well, it is not easy to assess their overall effect on the disease process. The 
genetic predisposition refers to a person’s potential to develop a disease based on 
genetic and hereditary factors. The genetic factors can affect the susceptibility of a 
person to the disease, and may also influence the patient’s response to drug therapy. 
The study of the SNPs can be helpful for the medical scientists to estimate the 
patients’ responses to drugs. Because some SNPs are usually located near the genes 
associated with the disease, they can serve as biological markers for pinpointing the 
disease on the human genome. The SNPs become helpful for the scientists during 
the screening process for locating the relevant genes associated with the disease.



Briefly speaking, when a researcher is going to screen the genes associated with 
the disease, DNA samples from two groups of individuals are collected and com-
pared. One group is of the individuals affected by the disease, while another group 
is of unaffected individuals. The differences between the SNP patterns of these two 
groups are compared. The results can indicate the patterns that are highly likely 
associated with the disease-causing gene. The goal is to establish SNP profiles that 
are characteristic of the disease. These studies are called association studies.

This type of research study is a very active area, and there have been a lot of 
research reports about the application of SNP techniques for a variety of diseases. 
For example, Langers et al. (2008) evaluated the prognostic significance of SNPs 
and tumour protein levels of MMP-2 and MMP-9 in 215 colorectal cancer patients. 
Fisher et al. (2008) conducted a nonsynonymous SNP scan for ulcerative colitics in 
study of Crohn’s disease, and identified a previously unknown susceptibility locus 
at ECM1. Bodmer and Bonilla (2008) provided a historical overview of the search 
for genetic variants that influenced the susceptibility of an individual to a chronic 
disease. Chambers et al. (2008) carried out a genome-wide association study of 
more than 300,000 SNPs for insulin resistance and related phenotypes. It is found 
that common genetic variation near MC4R is associated with waist circumference 
and insulin resistance.

1.2.3 HapMap Project for Genomic Studies

The HapMap can be regarded as a catalog of common human genomic variants. It 
compares the genetic sequences among different individuals for locating chromo-
somal regions where genetic variants are shared. With the availability of this infor-
mation freely, it will enable the researchers to figure out genes involved in diseases 
and to estimate individual responses to medications and environmental factors. By 
the end of February 2005, 7 month ahead of the target date, the group completed 
the first draft of the human haplotype map (HapMap). It consists of 1 million markers 
(SNPs) of genetic variations. On July 20, 2006, the HapMap project released its 
phase II dataset, which contains genotypes, frequencies and assays for bulk down-
load. The data also includes genotypes from the Affymetrix 500k genotyping array. 
In the phase II, there existed more than 3 million non-redundant SNPs. The prelimi-
nary release of HapMap Phase 3, containing genotype and pedigree information for 
11 populations (including individuals in the original four from earlier phases of the 
project), is available on May 27, 2008.

As the results from HapMap project have been becoming available to the 
researchers, the HapMap data have been applied in different genomic studies. For 
example, Cho (2008) used information on the correlation patterns observed from 
the HapMap databases to design genotyping platforms for the study of the inflam-
matory bowel disease. Hashibe et al. (2008) used the 163 SNPs genotyped by 
HapMap in the vicinity of the ADH gene cluster in the study of upper aerodigestive 
cancers. In the study of human bladder cancer, Majewski et al. (2008) employed the 
recombination rates based on HapMap and Perlegen83 data from UCSC and found 
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seven HapMap recombination hotspots within the LOP peak. Gianotti et al. (2008) 
applied the phase II genotyping data from the HapMap project for the study of 
genetic variation on obesity and insulin resistance in male adults.

1.2.4  Potential Contributions of the HapMap Project 
to Genomic Analysis

It is expected that the HapMap project can provide a database that would be very 
useful for future studies on diseases. With the information of dense SNP genotyp-
ing in the second phase of the HapMap project, this can reduce many of the work 
and cost of the genomic searching of the disease genes as the genomic information 
like the tag SNPs of the genome is available. As the genotyping of the SNPs can be 
reduced to the set of tag SNPs, it is estimated that a saving of up to about 95% with 
the current brute force disease-searching approach can be achieved.

Another potential contribution of the HapMap project is that, with the informa-
tion of the genomic variation, we can identify those variations that have an effect 
on good health. These variations may be the ones that can protect us from infectious 
diseases or that can enable the human being to live longer. Or, they may be the vari-
ations that can affect the individual’s response to therapeutic drugs, toxic sub-
stances and environmental factors. With the availability of this information, it 
becomes possible to develop therapies and preventive strategies that are tailored to 
fit each individual’s unique genetic characteristics. These customized medical treat-
ments can maximize the effectiveness of the treatments and at the same time mini-
mize the their side effects.

The knowledge from the HapMap can also be a guide for the association studies 
for the disease analysis. There is a hypothesis about the common-disease-common 
variance. It states that the risk of getting common diseases should be influenced by 
genetic variants that are also common in different populations. It is estimated that 
about 90% of sequence variation among individuals are caused by common variants 
(Kruglyak and Nickerson, 2001). It is also observed that, in most cases, each of 
these variants comes from single historical mutation event. Thus, they are associ-
ated with nearby variants that were presented on the ancestral chromosome where 
the mutation occurred. There is currently not enough data to assess this hypothesis 
generally, even though more and more widely distributed genetic variants are found 
to be associated with common diseases, such as diabetes, stroke and heart attacks. 
With the genotyping results from HapMap, it is expected that this can enable us to 
learn more about these links between the common disorders and our genes and 
genomic variations.

In the association studies, the traditional approach is to test each putative causal 
variant for identifying the correlation with the target disease. This is called the direct 
approach. The direct approach has the disadvantage of being expensive. One has to 
search the entire genome for any variants so that one can determine the disease 
associations. Thus, the scale of genotyping experiments required is very large and 



currently the approach is limited to the sequencing of the functional parts of candidate 
genes. With the HapMap information, an alternative approach is possible (Intl. 
HapMap Consortium, 2003). With this alternative approach, the sequencing costs 
would become much lower, as only a subset of the genomic variants serve as genetic 
markers for detecting association between a particular genomic region and the disease. 
The markers are not necessarily functional and the causative-variant search can be 
limited to the regions that have significant association with the disease.

Lastly, another potential contribution is that, in HapMap project, the population 
origins of the samples are kept and it becomes more efficient to analyses the popu-
lation history and do inferences about the various degrees of relatedness of different 
populations. This population-history work can be helpful for biomedical researches. 
Nevertheless, issues like ethic issue may arise with this identification of population 
origins. Care has been taken to avoid the conflicts with the individual population 
customs or culture. For example, the American-Indian tribes have not been chosen 
because the findings may conflict with their religious and cultural understandings 
of their origins (Intl. HapMap Consortium, 2004).

1.2.5 Haplotypes, Haplotype Blocks and Medical Applications

Even though recombination events repeat generations after generations and segments 
of the ancestral chromosomes in a population are shuffled, there are still some 
segments that have not been broken up by recombination. These segments occur as 
regions of DNA sequences shared by multiple individuals, and are separated by 
places where recombination has occurred. These segments are call haplotypes. The 
haplotypes can enable the medical scientists in the search for genes in the diseases 
and in the study of important genetic traits.

Daly et al. (2001) began the studies of the haplotypes for the linkage disequilib-
rium (LD) analysis and compared these results with the results from single-marker 
LD. It is shown that the noises, which are presumably caused by the marker history 
etc., disappear when using the haplotype-based LD. Daly’s results also show that 
there exists a picture of discrete haplotype blocks that are of order tens to hundreds 
of kilobases. Inside each block, there is only a little diversity, while between the 
blocks there are punctuations that show the potential sites of recombination. Daly 
et al. have observed that, over a long distance, most haplotypes can be cataloged 
into a few common haplotype categories. The idea of the haplotype blocks has 
come from studies like that of Gabriel et al. (2002). Gabriel et al. showed that the 
human genome can be divided into haplotype blocks, which are defined as regions 
of little historical recombination and of only a few common haplotypes.

Different studies have conducted the haplotype analysis for the disease studies. 
For example, Levy-Lahad et al. (1995) found that there was positive evidence for 
linkage with markers on the chromosome 1 for the Alzheimer’s disease. Tishkoff 
et al. (2001) carried out haplotype analysis of A- and Med mutations at this locus 
for the study of malarial resistance. Singleton et al. (2003) discovered a chromosome 
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4p15 haplotype segregating with parkinsonism and essential tremor, with suggestive 
evidence for linkage to PARK4. Herbert et al. (2006) identified a core haplotype 
block containing rs7566605 in their association study of adult and childhood 
obesity. Couzin and Kaiser (2007) provided an overview of the application of 
genome-wide association study for common diseases like diabetes, heart disease, 
inflammatory bowel disease, macular degeneration, and cancer. The studies 
derive the power from Hapmap and Haplotype Map that catalogs human genetic 
variation.

1.2.6 Genomic Analysis with Microarray Experiments

Microarray is a solid substrate where the DNA is attached to in an ordered manner 
at high density (Geschwind and Gregg, 2002). Among the high-throughput methods 
of gene expression, the microarray has been the most widely used one for assessing 
the differences in mRNA abundance in the biological samples. With the work of 
Patrick Brown and his colleagues (DeRisi et al., 1996), microarray has been gaining 
its popularity.

In a single microarray experiment, the expression levels of as many as thousands 
of genes can be measured simultaneously. Thus, it can enable the genome-wide 
measurement of gene expression. This is a large improvement over the situation of 
“one gene per experiment” in the past.

The microarray technology can also enable us to have the gene expression values 
at different time points of a cell cycle. In the literature, different methods have been 
developed to analyze gene expression time series data, see for instance (Costa et al., 
2002; Yoshioka and Ishii, 2002; Tabus and Astola, 2003; Syeda-Mahmood, 2003; 
Wu et al., 2003). The construction of genetic network from gene expression time 
series is tackled in (Kesseli et al., 2004; Tabus et al., 2004; Sakamoto and Iba, 
2001). The visualizing of the gene expression time series is discussed in studies 
(Zhang et al., 2003; Craig et al., 2002). More details about the microarray technology 
are available in the Section 3.4.

1.3  Case Studies: Building Data Mining Algorithms 
for Genomic Applications

With the advances in the technology for the genomic analysis, it is not unusual that 
millions of data records are produced and needed for investigation in one genomic 
study (Bergeron, 2003). It becomes very costly to search for any meaning informa-
tion from these datasets by human inspection. Advances in the improvement and 
new designs of data mining algorithms are needed for modeling genomic problems 



efficiently. In these cases, data mining algorithms are very useful to extract the patterns 
from the data and to present it in such a way that can enable us to have a better 
understanding of the structure, relation, or function of the subjects.

In order to illustrate the development process of tailor-made data mining algorithms 
for the genomic analysis, three case studies are highlighted to show the motivations, 
the algorithms, the computational considerations and the performance evaluation. 
In the first case study, we have developed clustering and graph algorithms for the 
problem of tag-SNP selection, which can combine functional and linkage disequi-
librium information. It has been shown to reduce efficiently the costs of genotyping. 
In the second case study, non-parametric method of constrained unidimensional 
scaling has been proposed for constructing linkage disequilibrium map (LD map), 
which may have the medical potentials of locating disease genes etc. Thirdly, 
hybrid algorithms of principal component and neural network have been developed 
for the continuous microarray time series, which have been shown to have better 
predictability than the other methods and which offer us an efficient tool for inves-
tigating continuous microarray time series.

1.3.1  Building Data Mining Algorithms for Tag-SNP 
Selection Problems

With the results from the genomic projects like the HapMap Project, it is estimated 
that there exist about 10 million single nucleotide polymorphisms (SNPs) in the 
human genome. Although only a proportion of these SNPs are functional, all can 
be used as markers for indirect association studies to detect disease-related genetic 
variants. With such a large number of SNPs, the complete screening of all the SNPs 
in a genomic region becomes an expensive undertaking. It is much more cost-effective 
to develop tools for selecting a subset of informative SNPs, called tag SNPs, in the 
medical or biological analysis (Johnson et al., 2001).

We have formulated this problem of selecting tag SNP as a hierarchical cluster-
ing problem and developed a suitable similarity function for measuring the dis-
tances between the clusters (Ao et al., 2005; Ng et al., 2006; Sham and Ao et al., 
2007). Hierarchical clustering algorithms can be classified into two types, the 
agglomerative algorithms and divisive algorithms, according to their procedures of 
grouping or dividing the data points. In the agglomerative algorithms, they produce 
a sequence of clustering with decreasing number of clusters m at each step. On the 
other hand, divisive algorithms give us a clustering sequence of increasing number 
of clusters at each step. The final product is a hierarchy of clustering with these 
algorithms. In our works, we have applied the agglomerative algorithms for the tag 
SNP selection problem. Therefore, we shall restrict our discussion to the agglom-
erative algorithms. For their computational requirements, Murtagh (1983, 1984 and 
1985) has discussed about the implementations for widely used agglomerative 
algorithms and the computational time complexity is of O(N 2).

1.3 Case Studies: Building Data Mining Algorithms 11
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1.3.2  Building Algorithms for the Problems of Construction 
of Non-parametric Linkage Disequilibrium Maps

There are several different advantages of the linkage disequilibrium maps (LD 
maps) for human genome. The LD map can provide us with a much higher resolution 
of the biological samples than the traditional linkage maps. The other advantages 
of LD maps are the revealing of the recombination patterns, the facilitating of the 
optimal SNP/marker spacing, and the increasing of the power for localizing disease 
genes etc.

The first LD maps were proposed by Maniatis and colleagues (2002) and are 
based on the Malecot equation. The derivation of this LD map is parametric and 
requires the estimation of three coefficient parameters. Nevertheless, these estimated 
parameters are found to have large variances among different populations.

We have formulated this LD mapping problem as a constrained unidimensional 
scaling problem (Ao et al., 2005, 2007; Ao, 2008). Our method, which is directly 
based on the measurement of LD among SNPs, is non-parametric. Therefore its 
underlying theory is different from LD maps derived from the given Malecot 
model. For solving this constrained unidimensional scaling problem, we have for-
mulated it as a quadratic optimization problem. Different from the classical metric 
unidimensional scaling problem, the constrained problem is not an NP-hard com-
binatorial problem. The optimal solution is determined by using the quadratic pro-
gramming solver.

1.3.3  Building Hybrid Models for the Gene Regulatory Networks 
from Microarray Experiments

The neural network is one of the machine learning tools that can reduce noises and 
make prediction reliably. A key property of the neural network is its ability of learn-
ing for further improving its performance (Huang et al., 2004). The learning proc-
ess starts with the stimulation by the environment. Then, the neural network will 
have changes in its structure and parameters as a result of this stimulation. These 
changes will bring the network improvement in its response to the environment. In 
the learning process, there can be different objective tasks to achieve, like the func-
tion approximation, control, pattern recognition, filtering and prediction etc. We 
have employed the neural network for the function approximation and prediction of 
the cell cycles time series microarray data.

Different genetics studies have successfully employed the PCA-NN as a classifier 
of gene types, with continuous inputs and discrete outputs. In this work, we have 
been developing an algorithm for testing the predictability of the gene expression 
time series with the PCA and NN components on a continuous numerical inputs and 
outputs basis. The contribution of our work lies in the fact that we have been develo-
ping a more realistic model for the gene network from a continuous prospective 



(Ao et al., 2004; Ao and Ng, 2006). A microarray dataset can be considered as a 
matrix of gene expression values at various conditions. Each entry in the matrix is a 
numerical number called expression value. The algorithm can fully utilize the infor-
mation contained in the gene expression datasets. It can be considered as an exten-
sion of the linear network inference modeling, while previous models have often 
needed the linearity assumption or employed discrete values instead.

The formulation of our PCA-NN algorithm is quite computationally efficient. The 
input vectors for the time series analysis are the expression levels of the time points 
in the previous stages of the genes’ life cycle. These input vectors are processed by 
the PCA component. Then, we use these post-processed vectors to feed the neural 
network predictors. In order to avoid over-training of the network, we have adopted 
the AIC test and cross-validation to study the optimal setting of the neural network 
structures and the network’s stability. The AIC test can restrict the number of parameters 
of the network and thus can increase the computational performance.

The possibility of adding the GA component will be explored too. We can set 
the inclusion or exclusion of each gene in the building of the gene expression net-
work for a particular gene. This can simplify the gene network. It has been shown 
to be able to reduce the computational complexity of the originally NP-hard gene 
expression analysis efficiently, as pointed out by Keedwell in his work on genetic 
algorithm.

1.3 Case Studies: Building Data Mining Algorithms 13



Chapter 2
Data Mining Algorithms

In this Chapter, we will describe about several groups of the basic data mining 
algorithms. In the first section of dimension reduction and transformation algo-
rithms, we will talk about the feature selection, feature extraction methods like 
principal component analysis and independent component analysis etc. In the sec-
tion of machine learning algorithms, topics like logistic regression models, neural 
network models, fuzzy systems, ensemble methods, support vector machines and 
hybrid intelligent techniques etc. will be covered. Then, we will also talk about the 
clustering algorithms like hierarchical clustering, partition clustering spectral clus-
tering, and their considerations. In the section of graph algorithms, topics like 
computer representations of graphs, breadth-first search algorithms, and depth-first 
search algorithms will be covered. This Chapter will conclude with the discussion 
of several popular numerical optimization algorithms like steepest descent method, 
Newton’s method, sequential unconstrained minimization, reduced gradient methods, 
and interior-point methods.

2.1 Dimension Reduction and Transformation Algorithms

Before extracting meaningful patterns from the data, there are sometimes the needs 
for the transformation and reduction of the data. These needs may arise due to the 
fact that the original dataset is too large in dimension. Both reduction and transfor-
mation can support the data-mining process when used properly. The datasets may 
be reduced to the minimum possible size by tactics like sampling or summary sta-
tistics etc., while still satisfying our analysis requirement. The transformation can 
be achieved by translating one type of data to another through mathematical opera-
tions or mappings. The noise level in the data may be reduced by the eliminating 
irrelevant components with suitable transformation. Transformation tools like prin-
cipal component analysis (PCA) and independent component analysis (ICA) can be 
employed to find out the dominant components of the dataset. We have applied 
these algorithms for the microarray time series data, and we will compare their 
respective performances in our hybrid models.

Sio-long Ao, Data Mining and Applications in Genomics, 15
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16 2 Data Mining Algorithms

2.1.1 Feature Selection

Feature selection is the technique to select a subset of relevant features for constructing 
robust learning models. The optimal feature selection for supervised learning problems 
requires an exhaustive search of all possible subsets of features. This is not practical 
for large data sets. Greedy algorithms have been developed to overcome this draw-
back. Generally speaking, feature selection has the advantages like addressing the 
curse of dimensionality, speeding up data mining process and enhancing generalization 
capability. It can improve the model interpretability by providing a better under-
standing of the important features (Liu and Hiroshi, 1998). Feature selection tech-
niques have been employed in many bioinformatics applications. In the domain of 
gene selection, this method is also called discriminative gene selection, and it can 
select the influential genes based on data sets genotyped from microarray experi-
ments etc. Feature selection techniques like filter methods, wrapper methods and 
embedded method has been applied in the microarray domain. There are also appli-
cations for the content analysis and signal analysis in sequence analysis. Applications 
of the feature selection for mass spectrometry technology, which is a new and attractive 
framework for disease diagnosis and protein-based biomarker profiling, have also 
been reported. Other applications include, for example, SNP analysis, and text and 
literature mining etc. Saeys et al. (2007) provided a comprehensive review of the 
feature selection techniques in bioinformatics.

2.1.1.1 Information Gain

Information Gain is a measure for deciding the relevance of an attribute in the fea-
ture selection (Mitchell, 1997). In data mining applications, it is used to define a 
preferred sequence of attributes to narrow down the state of a random variable X. 
Generally speaking, an attribute of high information gain is selected over other 
attributes of low information gain.

The expected value of the information gain is the reduction in the entropy of X with the 
knowledge of the state of the random variable A. Mathematically, it is given as followed:

IG Ex a H Ex H Ex a( , ) ( ) ( | )= −

where Ex is the set of all training examples, and H is the entropy function. Entropy 
is a measure of the uncertainty associated with a random variable. For a discrete 
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2.1.1.2 Chi-Square Distribution

Chi-square distribution is commonly used in inferential statistics, for example, in 
the statistical significant tests. It has been proven that the chi-square distributions 
can be used to approximate other distributions under some assumptions if the null 



hypothesis is true. Chi-square distribution can be used for the test of the independence 
of two criteria of classification of qualitative data (Johnson et al., 1994). Let X
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is of the chi-square distribution, and is usually written as Q ∼ χ
k
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2.1.1.3 Recursive Feature Elimination

Recursive feature elimination can be useful when removing several features at a 
time. It can obtain a small feature subset, and can be represented in three iterative 
procedures: (1) training the classifier; (2) computing the ranking criterion for all 
features; (3) removing the feature with smallest ranking criterion. For computational 
considerations, it may improve the efficiency by removing several features at a time, 
even though it may degrade the classification performance to a certain extend. In 
such a case, the method produces a feature subset ranking. For cases when the fea-
tures are removed one at a time, the method produces a corresponding feature rank-
ing. This recursive feature elimination method can apply in the genomics studies, for 
example, in the gene selection for cancer classification (Guyon et al., 2002).

2.1.2 Feature Extraction

Feature extraction is to transform the input data into a reduced representation set of 
features (feature vectors). Its main difference with the feature selection techniques 
is the change of the original representation of the variables. Feature extraction can 
be very usefully when the input data is large and when there is redundant informa-
tion in the data. The feature extraction algorithms can return the feature vectors 
with the relevant information for performing the target task instead of the full size 
input. They can improve the computational performance as well as address the 
issues like over-fitting and noises in the experiments.

2.1.2.1 Principal Component Analysis

Among the tools of the dimension reduction and transformation, the principal compo-
nent analysis (PCA) is a popular tool for many researchers. Its basic idea is to find the 
directions in the multidimensional vector space that contribute most to the variability of 
the data. The principal component analysis was applied to reduce the dimensionality of 
the gene expression data in studies (Hornquist et al., 2003; Bicciato et al., 2003; Taylor 
et al., 2002; Yeung and Ruzzo, 2001, etc.). The focuses are on the effective dimensional 
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reduction by the PCA, the analysis of the compressed space and the assistance of the 
PCA for the classification and the clustering. Khan et al. (2001) applied the PCA and 
neural network for the classification of cancers using gene expression profiling. More 
details of the principal component analysis are available in Chapter 6.

2.1.2.2 Multifactor Dimensionality Reduction

Multifactor dimensionality reduction (MDR) is a constructive induction algorithm 
that converts variables (or attributes) to a single attribute. It can identify the interac-
tions among discrete variables that influence a binary outcome. The technique has 
been widely applied in bioinformatics problems. MDR can detect the gene-gene 
interactions in the genetic studies of common diseases such as bladder cancer, 
breast cancer, cardiovascular, schizophrenia, and type II diabetes. For example, 
MDR was applied to reveal high-order interactions among estrogen-metabolism 
genes in sporadic breast cancer (Ritchie et al., 2001). Cho et al. (2004) applied the 
technique for Type 2 diabetes. Coffey et al. (2004) employed the method to detect 
gene-gene interactions on risk of myocardial infarction.

2.1.2.3 Nonlinear Dimensionality Reduction

Nonlinear dimensionality reduction, also called manifold learning, is a new method 
to reduce the data dimensionality in a nonlinear way. It can provide a way to under-
stand and visualize the structure of complex data sets. It assumes that the high-
dimensional data lies on an embedded non-linear manifold within the higher 
dimensional space. If the manifold has a low enough dimension, the data can be 
visualized in this low dimensional space as well. Different methods (for example, 
Lee and Verleysen, 2007) were available in the domain of the estimation of the 
intrinsic dimension (PCA estimator, Local PCA estimator, and correlation dimen-
sion etc.), distance preservation (multidimensional scaling, Sammon’s nonlinear 
mapping, and curvilinear component analysis, etc.), and topology preservation 
(self-organizing maps, generative topographic mapping, and locally linear embedding, 
etc.). Nonlinear dimensionality reduction has been applied in different computa-
tional biology problems. For example, Wang et al. (2008) has applied the technique 
to improved classifier for computer-aided polyp detection in CT colonography. 
Georgiadis et al. (2008) applied the technique for discriminating between metastatic 
and primary brain tumors (gliomas and meningiomas) on MRI, employing textural 
features from routinely taken T1 post-contrast images.

2.1.2.4 Kernel PCA

Kernel principal component analysis (kernel PCA) is an extension of principal 
component analysis (PCA). Kernel PCA uses the kernel methods, that is, the originally 
linear operations of PCA are implemented in a reproducing kernel Hilbert space with 
a non-linear mapping. Thirion and Faugeras (2003) built a redundant representation 



of the data through the nonlinearity of the kernel PCA for the analysis of fMRI 
data. The model was useful in the characterization of subtle variations in the 
response to different experimental conditions. Tome et al. (2007) proposed the 
kernel PCA for the correction of univariate, single channel EEGs. The proposed 
kernel method employed a greedy approach to use a reduced data set to compute 
a new basis onto which to project the mapped data in feature space. Their results 
show good performance in removing artifacts like eye or head movements.

2.1.2.5 Latent Semantic Analysis

Latent semantic analysis (LSA) studies the relationships between a set of documents 
and the term they contain (Deerwester et al., 1990). LSA use a term-document 
matrix to described the occurrences of terms in documents, and produces a set of 
concepts related to the documents and the terms. Vanteru et al. (2008) applied 
the LSA method to link the PubMed to the Gene Ontology for ontology-based 
browsing. The PubMed is the current most widely used repository for bio-literature, 
and it consists of about 17 million abstracts as of 2007, requiring methods for effi-
ciently retrieving and browsing. The results showed that the proposed LSA tech-
nique outperformed the string comparison based techniques in associating the 
relevant abstracts to the GO terms. Ganapathiraju et al. (2008) proposed a LSA 
method for the prediction of transmembrane (TM) helices with high accuracy. The 
proposed method can extract features from protein sequence and have the potential 
for applications in other sequence-based analysis problems as well.

2.1.2.6 Independent Component Analysis

The independent component analysis (ICA) is a recently developed theory (Hyvärien 
et al., 2001; Comon, 1994 and Jutten and Herault, 1991). Its objective is to make the 
transformed entries mutually independent (Theodoridis and Koutroumbas, 2003). 
Biswas et al. (2008) applied Independent Component Analysis to gene expression 
traits derived from a cross between two strains of Saccharomyces cerevisiae. It 
showed that the dimension reduction method is a useful approach for probing the 
genetic architecture of gene expression variation. Esposito et al. (2008) proposed 
different strategies for combing the ICA results from individual-level and popula-
tion-level analyses of brain function to study of the effect of aging on the DM com-
ponent. Liu and Huang (2008) showed that ICA can further improve the performance 
of rotation forest in cancer classification with the microarray data sets. More detailed 
description of the independent component analysis is available in Chapter 6.

2.1.3 Dimension Reduction and Transformation Software

Saeys et al. (2007) provided an updated survey of the software for feature selection. General 
purposed FS software includes, for example, WEKA (http://www.cs.waikato.ac.nz/ml/weka), 
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MLC + + (http://www.sgi.com/tech/mlc), Spider (http://www.kyb.tuebingen.mpg.
de/bs/people/spider), SVM and Kernel Methods Matlab Toolbox (http://asi.
insa-rouen.fr/∼arakotom/toolbox/index). Microarray analysis FS software includes 
software like SAM (http://www-stat.stanford.edu/∼tibs/SAM/), GA_KNN (http://
dir.niehs.nih.gov/microarray/datamining/), GenePattern (http://www.broad.mit.edu/
genepattern). SNP analysis FS software include CHOISS (http://biochem.kaist.ac.
kr/choiss.htm), MLR-tagging (http://alla.cs.gsu.ed/∼software/tagging/tagging.html), 
WCLUSTAG (http://bioinfo.hku.hk/wclustag).

The principal component analysis (PCA) is available in popular data analysis 
software like Matlab. The website (http://sourceforge.net/projects/mdr/) has the 
open-source multifactor dimensionality reduction software package. It is developed 
by the Computational Genetics Laboratory at the Norris-Cotton Cancer Center and 
Dartmouth Medical School in Lebanon, New Hampshire. The SVM and Kernel 
Methods Matlab Toolbox is available for download at http://asi.insa-rouen.fr/
enseignants/∼arakotom/toolbox/index.html. The Semantic Indexing Project is to 
create tools to identify the latent knowledge found in text, and the source code is 
available for download at: http://knowledgesearch.org/. A Matlab implementation 
of the ICA is available at: http://www.cs.helsinki.fi/u/ahyvarin/whatisica.shtml.

2.2 Machine Learning Algorithms

The machine learning algorithms have often been employed for pattern matching and 
pattern discovery. Machine learning is itself a collection of methods that result from 
the convergence of several disciplines like statistics, biological modeling, adaptive 
control theory and artificial intelligence (AI). Its spectrum of tools is wide and includes 
inductive logic programming, genetic algorithms, neural network, Bayesian networks, 
and hidden Markov Models, etc. Regardless of the divergences of the underlying tech-
nology, we can see that they usually have the following steps (Bergeron, 2003). First, 
the input data are fed into a comparison engine that compares the data with assumed 
model. Then, the comparison results are used for initializing some changes to the data 
or some modifications to the assumed model. And the evaluation engine gives us the 
performance results based on the modified model. These results are checked against 
our pre-defined criterion. If the criteria are not met, the above steps are repeated until 
the stopping criteria are satisfied. We will talk about logistics regression models, decision 
tree algorithms and neural networks in this section.

2.2.1 Logistic Regression Models

In genomic study, it is interesting to study the effects of some variables on the target 
variable, for example, the effects of some genes on certain diseases. One sensible way 
for expressing this relationship between the variables is by some sort of mathematical 



equation. When the variables are continuous and the relationship is believed to be 
linear, a suitable mathematical equation will be the simple linear regression model:
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variation (Shoukri and Pause, 1998). The methods of the least squares and the maxi-
mum likelihood are commonly used for the parameter estimation of the above 
regression model.

For the cases of binary target variable y, the direct application of the above 
regression is not well desired, as some of the assumptions for this model are not 
satisfied. Then, for this binary target problem, we need to apply the logistic trans-
formation, which is fundamental for the logistic regression models. Let’s consider 
the case that binary variable y refers to the disease status, with the value 1 for get-
ting the disease and 0 for no disease in the sample. And, the variable X is a risk 
factor for the disease, with normal distribution. Let P(D) = P[y = 1] = π and P (⎯D) 
= Pr[y = 0] = 1 − p. Let N(m

1
, s2) and N(m

2
, s2) be the conditional distributions of 

x for the diseased population and for the non-diseased population respectively. Let 
p = Pr[y = 1 | X = x] = p(y = 1, X = x)/f(x), where
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Then, we can have the log-odds result
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The above log-odds is a linear function of the input variable X, and this logarithmic 
transformation on the odds is called “logit”. The maximum likelihood method can 
be used to estimate the parameters of this model. Pearson’s chi-square and the like-
lihood ratio test can be used for measuring the fitness between the responses of the 
postulated model and the observed data.

2.2.2 Decision Tree Algorithms

Decision tree algorithms are decided with a sequence of decision rules for splitting 
a large set of records into successively smaller sets of records. The objective is to 
obtain more homogeneous smaller sets with respect to a particular target variable. 
These algorithms have been found powerful and popular for both classification and 
prediction problems (Berry and Linoff, 2004). One of the reasons for its popularity 
is that the decision rules can also be expressed in English for easy understanding 
and presentation. The following figure (Fig. 2.1) illustrates what the graphic output 
of the decision tree looks like with the software SAS.

Even though there exist different decision tree algorithms, all of them share the 
same basic procedure. That is to repeatedly split the data records into smaller 
groups, so that, in each new generation, the new sub-groups will have greater purity 

Fig. 2.1 An example of the graphic output of the decision tree with the software SAS



than its ancestors with respect to the target variable. The purity is a measure used 
to evaluation the performance of the potential splits. For categorical target variable, 
tests such as Gini, information gain, or chi-square are suitable for measuring the 
purity levels of the splits. For continuous numeric variable, tests like variance 
reduction and F-test are appropriate.

At the start of the decision tree building, the algorithms try to identify the input vari-
able that can have the best performance of splitting the data with respect to the above 
purity. Then, once again, all the input variables are considered as the candidate splitters 
in the coming rounds. At the succeeding level of the tree, these subsets are further split 
according to the rule that works best for them. This process is exhaustive, as the algo-
rithms proceed by checking each input variable in turn for building the splits.

The performance of a decision tree algorithm can be assessed with the test data, 
which consists of data records that have not been used for building the tree. The 
misclassification rate is popular for this assessment. The method of pruning can be 
applied to choose the tree with the minimal misclassification rate. The following 
figure (Fig. 2.2) illustrates this determination of the tree structure.

2.2.3 Inductive-Based Learning

Inductive learning is the process of learning by example, where the system tries to induce 
a general rule from the set of observed instances (Quinlan, 1990). Inductive methods can 

Fig. 2.2 An example for the illustration of the determination of the tree structure with the minimal 
misclassification rate
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be characterized as search methods over a hypothesis spaces. To constraint the hypothesis 
space, relational learners introduce a partial order between hypotheses. Jia and Kitchen 
(2000) applied the inductive-based learning algorithm to predict the class distribution of 
object-contour segments in image similarity computation. Garcia-Gomez et al. (2005) 
proposed a hybrid method of stochastic context-free grammars (SCFG) and Hidden 
Markov Models (HMM) for modeling tRNA secondary structures. Given annotated 
public databases, the HMM and SCFG models are learned by means of automatic induc-
tive learning methods. Significant results were obtained in the performed experiments on 
the tRNA sequence corpus and the non-tRNA sequence corpus.

2.2.4 Neural Network Models

Among the different tasks that machine learning tools can handle, one popular task is to 
filter the noises of the source data and then to made prediction basing on the extracted 
patterns of the source data. The neural network has been found to perform this filtering 
and prediction capability well. The network can first extract the vital signals and informa-
tion from the source data. Then it can predict what the future signals and information will 
be, based on some function approximation. The filtering and prediction capability of the 
neural network have enabled it to become a popular advance tool for the time series pre-
diction, e.g., the financial prediction of the future index, stock share prices, currency 
rates, the weather forecast, the traffic control forecast and the medical analysis.

The study of the neural network began after the Warren McCulloch and Walter Pitts 
have proposed the first mathematical model of a single idealized biological neuron in 
1943 (McCulloch and Pitts, 1943). The model has been known as McCulloch-Pitts 
model, which consists of a single neuron that receives the input signals and sums them 
up with different weights. Then, newer models like the Perceptron by Frank Rosenblatt 
(Resenblatt, 1958) and the ADALINE by Widrow (Widrow, 1959) were developed.

Since these earliest works on the neural network, there have come many other neu-
ral network models that made use of the neuron concept. The network models that uti-
lize more than one neuron and contain no feed-back paths within the network are given 
the term feedforward networks. In the feedforward network, there are the single-layer 
feedforward networks, which consist of the input layer and output layer only, and the 
multi-layer feedforward networks, which consist of the input layer, hidden layer and 
the output layer. In our research, we have utilized the multi-layer feedforward network 
for building our hybrid models for continuous microarray time series analysis.

2.2.5 Fuzzy Systems

Fuzzy systems are based on fuzzy logic, which was first proposed by Lotfi Zadeh in 
1965. Fuzzy logic is a form of multi-valued logic that deals with approximate reasoning 
(Zadeh et al., 1996). The degree of truth of a statement is not restricted to the two truth 
values {true, false}. Instead, it can range between 0 and 1.For example, in a 1,000-ml 



bottle there are 200 ml of coke, one might define the bottle as being 0.2 full and 0.8 
empty, for the two fuzzy sets, Full and Empty. The fuzzy set theory defines the fuzzy 
operators on these fuzzy sets. A difficulty with the fuzzy systems is that the appropriate 
Fuzzy Operators may not be known in advance. Ghazavi and Kim et al. (2006) proposed 
the fuzzy partitional clustering method known as Fuzzy C-Means (FCM) to overcome 
the limitations of hard clustering for the gene expression microarray data. Ghazavi and 
Liao (2008) proposed three fuzzy modeling methods including the fuzzy k-nearest 
neighbor algorithm, a fuzzy clustering-based modeling, and the adaptive network-based 
fuzzy inference system for medical data mining. The proposed methods were applied to 
the medical data of the Wisconsin breast cancer dataset and the Pima Indians diabetes 
dataset. Akdemir (2008) proposed a new method based on combining principal compo-
nent analysis (PCA) and adaptive network-based fuzzy inference system (ANFIS) to 
diagnose the optic nerve disease from visual-evoked potential (VEP) signals.

2.2.6 Evolutionary Computing

Evolutionary computation techniques are often inspired by the biological systems of 
evolution (Jong, 2006). Evolutionary computing involves the iterative steps of the 
growth or development in a population. In the iterative process, the population is 
selected in a random search to achieve the target goal. It includes the metaheuristic 
optimization algorithms like genetic algorithms, evolutionary programming, evolution 
strategy, genetic programming, ant colony optimization and particle swarm optimiza-
tion. Lamers et al. (2008) proposed a hybrid system of artificial neural networks 
trained via evolutionary computation for predicting viral co-receptor usage. The results 
show identification of R5X4 viruses with predictive accuracy of 75.5%. Ritchie et al. 
(2007) applied the multifactor dimensionality reduction (MDR) and grammatical evo-
lution neural networks (GENN) to three data sets from GAW15 for the analysis of 
rheumatoid arthritis. Rowland (2003) proposed an approach to model selection in 
supervised learning with evolutionary computation with applications to metabolite 
determination and to disease prediction from gene expression data. To improve the 
diagnosis, prevention, and treatment of common, complex human diseases, Moore 
et al. developed a hierarchical dynamic systems approach based on Petri nets for 
generating biochemical network models that are consistent with genetic models of 
disease susceptibility. An evolutionary computation approach – grammatical evolution, 
is used as a search strategy for optimal Petri net models (Moore et al., 2005).

2.2.7 Computational Learning Theory

Computational learning theory examines formal models of induction to discover the 
common methods underlying efficient learning algorithms, and to identify the computa-
tional impediments to learning (Kearns and Vazirani, 1994). The emphasis is on rigor-
ous mathematical analysis. It includes algorithms that can make predictions about the 
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future based on past observations, algorithms that can learn from a teacher, and algo-
rithms that can learn by interacting with the world around them. Here, a computation 
is said to be feasible if it can be completed in polynomial time. Positive results refer to 
a certain class of functions that can be learned in polynomial time. Negative results 
refer to a certain class that can not be learned in polynomial time. There exist different 
approaches to computational learning theory, like probably approximately correct 
learning (PAC learning), Vapnik-Chervonenkis (VC) theory, Bayesian inference, and 
algorithmic learning theory (Angluin, 1992). Based on the theory, practical algorithms 
like boosting (inspired by PAC theory), support vector machines (inspired by VC the-
ory), and belief networks (inspired by Bayesian inference). Trumbower et al. (2006) 
applied the PAC learning model to classify static offline muscle strength observations 
with online rider performances. Miller and Eisenberg (2008) proposed a Bayesian 
inference procedure to identify residue pairs that are spatially proximal in a protein 
structure. The approach takes as input a multiple sequence alignment, and outputs an 
accurate posterior probability of proximity for each residue pair. Sajda (2006) provided 
a comprehensive survey of recent developments in machine learning, focusing on 
supervised and unsupervised linear methods and Bayesian inference, which had sig-
nificant impacts in the detection and diagnosis of disease in biomedicine.

2.2.8 Ensemble Methods

Ensemble methods have been developed for improving the predictive performance 
of a given individual statistical learning algorithm. Ensemble methods can be 
applied to numerical prediction and classification problems. Previous studies have 
shown that ensemble methods can often provide more accurate prediction than any 
of the individual classifiers in the ensemble (Opitz and Maclin, 1999). The resulting 
classifier of the ensemble is generally more accurate than any of the individual clas-
sifiers making up the ensemble. Both the theoretical and empirical research has 
shown that the individual classifiers of a good ensemble need themselves to be 
accurate and to make their errors on different parts of the input space. Studies like 
Maqsood et al. (2004) show that ensemble methods can improve numerical predic-
tion above that of the individual predictors.

A basic approach of the ensemble methods is to formulate a linear combination 
of some individual learning algorithms, instead of using one single fit of one algo-
rithm. An estimation of a real-value function can be expressed mathematically as 
g : Rd → R with a d-dimensional predictor variable X and a 1-dimensional response/
target Y. A base procedure is a specific algorithm which yields one estimated func-
tion ĝ(×). It is possible to run different base procedures many times to have different 
estimated functions. An ensemble-based function estimates ĝ

en
(×) by having a linear 

combination of the individual function estimates ĝ
k
(×):

ˆ ( ) ˆ ( )g c gen k k
k

M

⋅ = ⋅
=

∑
1



where c
k
 are the linear combination coefficients. The coefficients can simply 

assume averaging weights, or can assume different numerical values.
In an ensemble of neural networks, a collection of a finite number of neural net-

works is applied simultaneously for the same task. This ensemble approach origi-
nated from the work of Hansen and Salamon (1990), which have applied many 
neural networks and combined their predictions to form the ensemble. The results 
showed that significant improvement can be obtained for the generalization ability 
of a neural network system. Previous studies have applied the ensemble method for 
the classification problems of microarray data. The ensemble neural networks with 
combinational feature selection have been applied to the microarray experiments for 
the tumor classification and remarkably improved results have been obtained (Liu 
et al., 2004). It has been shown that the ensemble method is able to reduce the insta-
bility of the individual neural networks and help alleviate the problem of trapping the 
neural network into local minima. The ensemble method can cancel the noise part 
among its individual networks and retain the fitting to the regularities of the data.

2.2.9 Support Vector Machines

Support vector machines (SVMs) were developed at AT&T Bell Laboratories by Vapnik 
and his co-workers (Boser et al., 1992). Because of its industrial context, the support 
vector approach had a sound orientation towards real-world applications (Smola and 
Scholkopf, 2004). Support vector machines can be divided into two main types: support 
vector machines for classification (SVC) and support vector machines for regression, in 
short, support vector regression (SVR). Support vector machines have many mathemati-
cal features attractive for gene expression analysis (Brown et al., 2000). These include 
the sparseness of solution for large data sets, the flexible capability for handling large 
feature spaces, the robust identification of outliers, etc. SVC has found applications in 
different bioinformatics domains, for example, protein secondary structure prediction 
(Guo et al., 2004), cancer classification (Guyon et al., 2002), and enzyme family classi-
fication (Cai et al. 2004). While SVR has been applied to the time series prediction 
applications and excellent performances were obtained (Muller et al., 1997) and (Mattera 
and Haykin, 1999), only until recently, the SVR has been applied for the bioinformatics 
problems like the missing value estimation (Wang et al., 2006) and the smoothing of 
expression profiles (Martin et al., 2007) for DNA microarray gene expression data.

Support vector machines are based on the structural risk minimization principle 
from statistical learning theory. The structural risk minimization principle can mini-
mize both empirical risk and confidence principle and avoid the “over-fitting” 
problem. The basic principle of the support vector machines is to map the samples 
from the low-dimension input space into a much higher dimensional space with a 
kernel function. Then, quadratic programming is applied to search the global opti-
mal solution to the corresponding problem. Support vector regression constructs 
the fitted regression function by solving this optimal problem with constraints. The 
term support vectors refers to the samples with non-zero Lagrange multiplier. 
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The support vectors are the input samples that will be used in the regression analysis, 
and they determine the SVR function. In other words, the non support vectors in 
the data set will not have any influenced in the regression model. Usually, the 
number of support vectors is small relative to the total number of samples.

Mathematically, the constrained quadratic programming problem of SVR can be 
expressed as (Wang et al., 2006):
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is a non-linear function that maps the input feature into the higher dimensional space 
and ε is the error probability which limit the deviation between the regression func-
tion from the target. For a smaller value of ε, more support vectors are needed.

The dual problem for this quadratic programming problem is:
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support vectors are the input vectors which have their corresponding α of non-zero 
value. It should be noted that this kernel function can assume different forms, such as 
linear function, polynomial function, radial basis kernel function, etc. The perform-
ance of the SVR depends on the setting of the kernel functions as well as their cor-
responding parameters.

2.2.10 Hybrid Intelligent Techniques

Hybrid intelligent technique is the approach that employs a hybrid combination of 
methods from artificial intelligence subfields. It includes for example hybrid systems 
of neural networks – evolutionary algorithms – fuzzy systems, hybrid multi-agent 



systems, knowledge-based neural networks, hybrid optimization techniques, hybrid 
machine learning models using SVM, Bayesian networks, statistical learning etc. 
Hybrid intelligent systems have been proposed for the data mining of different data 
sets (see for example Ao, 2003a, b, c, 2006, 2007; Negoita et al., 2005; Ao et al., 
2008; Castillo et al., 2008). Hybrid intelligent systems are also very helpful for the 
genomics analysis. Yang (2008) proposed an intelligent decision system using 
machine learning techniques and markers to characterize tissue as cancerous, non-
cancerous or borderline. Bosl (2007) presented the hybrid intelligent systems needed 
for modeling complicated biochemical dynamics using rule-based models to repre-
sent expert knowledge in the context of cell cycle regulation and tumor growth. 
Huang, Lee and Ho (2007) proposed an efficient evolutionary approach to gene 
selection from microarray data which can be combined with the optimal design of 
various multiclass classifiers. The proposed method has three hybrid components 
which are fully cooperated: an efficient encoding scheme of candidate solutions, a 
generalized fitness function, and an intelligent genetic algorithm (IGA).

2.2.11 Machine Learning Software

The Weka software package is a collection of machine learning algorithms in Java. 
The algorithms can be applied directly, or called from user’s own Java code. The 
Weka package contains tool for data-processing, classification, regression, cluster-
ing, association rules and visualization. It is also suitable for developing new 
machine learning schemes. Weka is open source software available at:

http://www.cs.waikato.ac.nz/∼ml/weka/
The Sleipnir C + + library (Huttenhower et al., 2008) implemented a variety of 

machine learning and data manipulation algorithms with the focus on heterogeneous 
data integration and efficiency for very large biological data collections. Sleipnir 
allows microarray processing, functional ontology mining, clustering, Bayesian 
learning and inference, and Support Vector Machine tasks to be performed for 
heterogeneous data. Source code (C + +) and documentation are available at http://
function.princeton.edu/sleipnir

Matlab is a popular commercial high-level technical computing language and 
interactive environment for algorithm development, data visualization, data analy-
sis, and numeric computation. Matlab is developed by MathWorks Company, and 
more information about Matlab is available at its company web page:

http://www.mathworks.com/
The SVM Light V6.01 is an implementation of Support Vector Machines in C, 

and the software also provides methods for assessing the generalization perform-
ance efficiently. It is available free-of-charge at:

http://www.cs.cornell.edu/people/tj/svm_light/
The Netlab library includes software implementations of a wide range of data 

analysis techniques, many of which are not yet available in standard neural network 
simulation packages. The Netlab library is available at:

http://www.ncrg.aston.ac.uk/netlab/index.php
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2.3 Clustering Algorithms

The goal of the clustering algorithms is to figure out the underlying similarities 
among a set of feature vectors x, and to cluster similar vectors together (Theodoridis 
and Koutroumbas, 2003). The clustering process can also be called unsupervised 
pattern recognition. This is different from the supervised pattern recognition, in 
which a set of training data is available, and which the classification algorithms can 
exploit this known information in advance. The clustering algorithms have many 
different applications in social sciences, engineering and medical science. In our 
case study, the algorithms are designed for clustering similar SNPs and selecting 
tag SNPs among these clusters.

2.3.1 Reasons for Employing Clustering Algorithms

The clustering process can be viewed as a combinatorial problem of putting the data 
points into optimal clusters. However, it is NP-hard to enumerate all such possibi-
lities of clustering. Let S(N, m) be the number of all possible clustering of N vectors 
into m groups. We can easily see that S(N, 1) = 1, S(N, N) = 1, and S(N, m) = 0, for 
m > N. It satisfies the following recursive relationship (Spath, 1980):

S N m mS N m S N m( , ) ( , ) ( , )= − + − −1 1 1

Its solution is found to be the Stirling numbers of the second kind (for details, see 
(Liu, 1968) etc.):
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We can see that the solutions for this problem explore exponentially with (Spath, 
1980): S(15,3) = 2.38 x 106, S(20,4) = 4.52 x 1010, and S(100,5) is of order 1068. 
It is impractical to enumerate all possible clusters for all possible values of m.

The clustering algorithms can also allow us to infer some hypothesis concerning 
the nature of the data. It can be a tool for suggesting hypothesis (Theodoridis and 
Koutroumbas, 2003). These hypotheses can be verified by using other data sets as 
validation sets. Another use is on the prediction that bases on groups. The algo-
rithms can provide us with clusters that are characterized by the similarity of vec-
tors within each cluster. When a new data set or pattern is available, we can assign 
it to the known cluster by comparing its characters with each cluster’s characters. 
Clustering is important for the data reduction purpose too. There are many times 
that the amount of the data is very large and it is expensive to process all the data. 
Cluster analysis can be employed for grouping the data into a number of clusters, 
and then we can process each cluster as a single element.



2.3.2 Considerations with the Clustering Algorithms

In view of the computational difficulty, different clustering algorithms have been 
developed so that only a small number of the different possible combinations of the 
clusters will be considered. There are four main types of clustering algorithms: 
sequential algorithms, hierarchical clustering algorithms, clustering algorithms 
with cost function optimization, and others (like branch and bound algorithms, and 
genetic clustering algorithms). Different clustering algorithms usually produce dif-
ferent clustering results. It may depend on the problem to decide which type of 
clustering algorithms is employed.

In designing the clustering algorithm for solving a problem, a major issue is on 
how to define the similarity between two feature vectors. It is important to choose 
an appropriate measure for this task. Then, it is also important to choose an appro-
priate algorithmic scheme that clusters the vectors, basing on the selected similarity 
measure. Generally speaking, different results can be obtained with different algo-
rithmic schemes. Expert opinions are often needed for the interpretation of the 
results and for choosing a suitable scheme. In our project, experts from the Genome 
Research Centre have provided us expert opinions on this subject.

2.3.3 Distance Measure

The concept of distance measure is important for the clustering process, which need 
this measurement of the mathematical distance between individual observations, and 
groups of observations (Finch, 2005). Distance in this context can be in the Euclidean 
sense, or some other comparable conceptualization like Manhattan distance, 
Hamming distance etc. This will affect the shape of the clusters, as some objects 
may be close to one another with one distance while further away with another dis-
tance. A primary assumption underlying these distance measures is that the variables 
are continuous in nature. Finch discussed about the distance measures in Cluster 
analysis with dichotomous data. The definition of a distance measure has an impor-
tant role in the evaluation of clustering algorithms of gene expression profiles. Ido 
et al. (2007) compared different clustering solutions when using the Mutual 
Information (MI) measure, Euclidean distance and Pearson correlation coefficient. 
And, details about the quantitative comparison of how close the vectors are in the 
clustering process are available in the section of similarity measures in Chapter 4.

2.3.4 Types of Clustering

Clustering process can be grouped as hierarchical or partition clustering. Hierarchical 
clustering find successive clusters based on previously established clusters. 
Partition clustering establishes all clusters at once. It has been applied for exploring 
gene expression data in study like Heyer et al. (1999).
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2.3.4.1 Hierarchical Clustering

Hierarchical clustering can be further divided into two basic groups: agglomerative and 
divisive clustering. Agglomerative clustering is of the bottom-up approach, that is, starts 
with each object as a separate cluster and then merge the objects into successively larger 
clusters. On the other hand, the divisive clustering is of the top-down approach. It starts 
with the whole set and then divide it into successively smaller clusters. Co-clustering is 
a clustering technique that not only clusters the objects themselves, but also their 
features as well. Another difference among the clustering algorithms is to look at 
whether the clustering process uses symmetric or asymmetric distances. For example, 
Euclidean distances are symmetric, which mean distance from object H to K is the 
same as the distance from K to H. In applications like sequence-alignment methods, 
asymmetric distances have been used (for example, Prinzie and Van den Poel, 2006).

2.3.4.2 Partition Clustering

The partition clustering algorithms usually determine all the clusters at once. K-means 
clustering, fuzzy c-means clustering and derivatives are popular partition algorithms. 
In the K-means algorithm, initially there are k randomly generated clusters. The aver-
age of all the points in a cluster is assigned as the center. Then, the data point is 
assigned to the nearest cluster center, and the new cluster centers are computed. The 
above two steps are repeat until the convergence criterion is met. In fuzzy clustering, 
each data point belongs to a cluster to a certain extend, rather than to one certain cluster 
completely. Besides this difference, the fuzzy c-means algorithm is similar with the 
k-means algorithm. Like hierarchical clustering, the partition clustering algorithms are 
also very popular for the genomic analysis, with microarray data sets etc.

2.3.4.3 Spectral Clustering

In spectral clustering, the dimensionality reduction for clustering in lower dimen-
sions is performed with the spectrum of the similarity matrix of the data. A popular 
spectral clustering is the Shi-Malik algorithm, which is widely used for image seg-
mentation. Liu et al. (2008) applied the spectral clustering to the analysis of correla-
tion mutations in HIV-1 protease. The spectral clustering of the resulting covariance 
matrices disclosed two distinctive clusters of correlated residues. Oliveira and Seok 
(2008) proposed a multilevel spectral algorithm which can identify protein com-
plexes more accurately with less computational time.

2.3.5 Clustering Software

Many commercial software packages such as Matlab have their own clustering 
functions. Nevertheless, the clustering algorithms are also available in various open 
source projects. For example, the software Cluster is an open source clustering 



software available with the implementation of the most commonly used clustering 
methods for gene expression data analysis. There are routines in the C clustering 
library, which enable the users to link with other C program. The software is 
available at:

http://bonsai.ims.u-tokyo.ac.jp/∼mdehoon/software/cluster/software.htm
The following web page (http://astro.u-strasbg.fr/∼fmurtagh/mda-sw/) contains 

the list of software and resources for clustering analysis by Fionn Murtagh.
CLUSTAG and WCLUSTAG are the clustering algorithms for finding tagging 

SNPs, with free downloads available at:
http://hkumath.hku.hk/web/link/CLUSTAG/CLUSTAG.html
http://bioinfo.hku.hk/wclustag/

2.4 Graph Algorithms

2.4.1 Graph Abstract Data Type

The graph algorithms have been applied in different domains like enumeration, geom-
etry, topology, statistics, logistics, and computing etc. In graph theory, a graph G refers 
to the collection of a finite non-empty set V(G) of elements called vertices (or nodes) 
and a finite set E(G) of distinct pairs of distinct elements of V(G) called edges. These 
two sets V(G) and E(G) are called the vertex set of and the edge set of G respectively 
(Beineke and Wilson, 1997). If the edge set consists of ordered pairs of distinct verti-
ces, the graph is called directed graph. Similarly, if the edge set consists of unordered 
pairs of distinct vertices, it is undirected graph (Ahuja et al., 1993).

In a graph G, an edge e that connects two vertices v and w can be represented as {v, w}, 
or in short, vw. When there is the edge e that connects vertices v and w, these two 
vertices are called adjacent, and w is a neighbour of v. The neighbourhood N(v) of a v 
is defined as the set of all vertices of G adjacent to v. A sequence of edges of the form 
v

0
v

1
,v

1
v

2
,…,v

k−1
v

k
, where the vertices and the edges are all distinct, is called a path. 

A graph G is connected if there exists a path joining each pair of vertices of G. A discon-
nected graph is a graph that is not connected. A graph G’ = (V’, E’) is a subgraph of 
G = (V, E) if V’ Í V and E’ Í E. We can divide the disconnected graph into maximal 
connected subgraphs and these subgraphs are called components.

An edge {u, v} in a graph G is said to cover its incident vertices u and v. For a 
graph G = (V, E) with E’ Í E, E’ is said to be an edge cover of G (or, to cover G) 
if, for each vertex v Î V, there exist at least one edge in E’ which covers v (Foulds, 
1991). The cardinality of the edge cover with the least number of elements is called 
the edge covering number of the graph G. A covering is said to be minimal if none 
of its proper subsets is a covering.

A vertex in a graph G is said to dominate those other vertices in G with which 
it is adjacent. For a graph G = (V, E) with E

1
 Í E and U Ì V, E

1
(U) is said to be 

an vertex dominating set for G if every vertex of V either belongs to E
1
(U) or is 

dominated by an vertex of U. The cardinality of the vertex dominating set with the 
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least number of elements is called the vertex dominating number of G. A domina-
ting set of a graph G is said to be minimum if there does not exist any dominating 
set of G with a smaller number of elements.

Among the graph techniques, the search algorithms are essential ones for 
attempting to find all the vertices of the graph that satisfy desired properties. 
Usually, a search algorithm will spread out from the source vertex and identify an 
increasing number of vertices that are reachable from the source. There are differ-
ent rules for the search algorithms, like the breadth-first search, depth-first search, 
and reverse search algorithm etc.

2.4.2 Computer Representations of Graphs

Adjacency matrices and adjacency lists are two common computer representations 
of graphs. In the two-dimensional adjacency matrix, the rows and columns repre-
sent source and destination vertices. The entries in the matrix indicate whether an 
edge exists between vertices. The matrix can be a Boolean matrix such that the 
entry (i, j) is true if and only if edge (i, j) is in E(G). For a graph G of n vertices and 
m edges, the adjacency matrix representation requires O(n2) storage, while the rep-
resentation has constant-time lookup to check if an edge is in the graph. In an adja-
cency list, each node is represented as a data structure that contains a list of all 
adjacent nodes. For a graph G of n vertices and m edges, the adjacency matrix rep-
resentation requires O(m) storage, while the representation may require up to O(n) 
time to check if an edge is in the graph. So, adjacency lists are preferred for sparse 
graphs. Otherwise, an adjacency matrix is a popular choice.

2.4.3 Breadth-First Search Algorithms

Breadth-first search (BFS) is an exhaustive search method that expands and checks 
all nodes of a graph systematically (Knuth, 1997). It begins at the root node and 
explores all the neighboring nodes. Then for each of the above nearest nodes, its 
unexplored neighbor nodes will be explored. This process will keep on until the goal 
is reached. For the time complexity, all the vertices and edges will need to be exam-
ined in the worst case, so the complexity is O(|E| + |V|). BFS has been applied to find 
all connected components in a graph, and the shortest path between two nodes etc.

2.4.4 Depth-First Search Algorithms

Depth-first search (DFS) is a search method that starts at the root and explores as far 
as possible along each branch before backtracking (Knuth, 1997). In the graph case 
here, it may need to select some nodes as the root in the search, and then expand the 



first child node of this search tree, until it reaches a node of no children. Then, the 
search will return to the most recent node not yet explored. Its time complexity is 
the same as the BFS. DFS can be found in applications like finding connected com-
ponents, topological sorting and solving puzzles with only one solution.

2.4.5 Graph Connectivity Algorithms

A cut of a connected graph G is a set of vertices whose removal makes the graph 
disconnected (Godsil and Royle, 2001). The size of a smallest cut is call the 
connectivity K(G). A graph is called k-connected when its connectivity is k or 
greater. Search algorithms like BFS can be applied to determine whether two 
vertices in a graph are connected or not. Undirected graph connectivity may be 
solved in O(log n) space.

2.4.6 Graph Algorithm Software

Public-domain sources for the program and data of The Stanford GraphBase are 
available at:

http://www-cs-staff.stanford.edu/∼knuth/sgb.html
The Java source code of the Dijkstra’s algorithm, a popular shortest path search 

algorithm, is available freely at:
http://renaud.waldura.com/doc/java/dijkstra/
The Stony Brook Algorithm Repository is a comprehensive collection of algo-

rithm implementations for combinatorial problems. It is available for downloads by 
different programming languages and by different problem at:

http://www.cs.sunysb.edu/∼algorith/
ABACUS is a software system in C + + for the branch-and-bound algorithms, 

available at:
http://www.informatik.uni-koeln.de/abacus/

2.5 Numerical Optimization Algorithms

Sometimes, optimal solutions are preferred after the transformation and reduction 
of the originally complex problems. The different optimization algorithms are very 
helpful for this purpose. Generally speaking, the optimization is to find out the 
solutions and their respective characterization for the following mathematical 
problems (Pardalos and Resende, 2002):

min f(x)
such that
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x X n∈ ⊆ ℜ

where the decision variables in the model is represented by x, the goodness of the solution 
is measured by the objective function f(x), and the set of feasible solutions are denoted 
by X. In solving the optimization problem, we are also concerned with the properties of 
the algorithms for solving the problem, for example, how fast the algorithm converges.

2.5.1 Steepest Descent Method

The steepest descent method is also called the gradient descent method. It starts at 
a point P

0
, and moves from P

i
 to P

i + 1
 by minimizing along the line extending from 

P
i
 in the direction of the local downhill gradient −Ñf(P

i
), and so on until the 

termination goal is reached (Arfken, 1985). For functions of long, narrow valley 
structures, this method requires a lot of iteration for obtaining the solution.

2.5.2 Conjugate Gradient Method

Instead of using the local gradient for going downhill, the conjugate gradient 
method uses conjugate directions. Two non-zero vectors u and v are conjugate (with 
respect to a n-by-n symmetric, positive definite and real matrix A) if uT Av = 0. The 
method was originally proposed by Hestenes and Stiefel (1952). For the case when 
the region near the minimum has the shape of a long, narrow valley, the method can 
finish the search much faster than the steepest descent method.

2.5.3 Newton’s Method

Newton’s method, also called Newton-Raphson method or the Newton-Fourier 
method, is a very popular root-finding algorithm. It can often converge quickly, 
especially if the iteration starts near the desired root. With an initial choice of the 
root’s position x

0
 for the function f(x), the algorithm is applied iteratively to obtain 

x
n+1

 = x
n
 − f (x

n
)/f ’ (x

n
), where n = 1, 2, 3, … and f ’ denotes the derivative of the 

function f (Suli and Mayers, 2003).

2.5.4 Genetic Algorithm

Genetic algorithm (GA) is inspired by evolutionary biology with techniques like inherit-
ance, mutation, selection, and crossover (recombination). It is a global search heuristics 
algorithm, and has applications in problems of bioinformatics and phylogenetics etc. 



It requires a genetic representation of the solution domain and a fitness function to evalu-
ate the solution domain. A pseudo-code GA algorithm is as followed (Vose, 1999):

1. Choose the initial population.
2. Evaluate the fitness of each individual in the population.
3. Iterate.

3.1 Choose the highest-ranking individuals for reproduction.
3.2 Generate the new offspring through crossover and mutation.
3.3 Evaluate the fitness of each individual in the offspring.
3.4 Replace poorest part of the population with the offspring.

4. Until the termination condition is reached.

2.5.5 Sequential Unconstrained Minimization

Sequential unconstrained minimization algorithm (SUMMA) is an iterative proce-
dure for constrained minimization. The SUMMA refers to a general class of itera-
tive algorithms that include, as particular cases, the barrier- and penalty-function 
method, the gradient descent method and the Newton method etc. At the kth step, 
we minimize the function G

k
(x) = f(x) + g

k
 (x) to obtain x

k
, where the auxiliary func-

tions g
k
 (x) : D Í RJ → R

+
 are nonnegative on the set D, and each x

k
 is assumed to 

lie within D. The objective is to minimize the continuous function f : RJ → R over 
x in the set C = 

−
D, the closure of D (Byrne, 2008).

2.5.6 Reduced Gradient Methods

The reduced gradient methods are implicit variable elimination algorithms for solv-
ing nonlinear programming (NLP) problems. An unconstrained function is first 
formed with a reduced number of (N – K) variables, where the NLP problem has N 
design variable and K (where K < N) equality constraints. The constrained function 
is optimized for a solution of the design variables. As the other K variables are 
dependent on the chosen (N – K) variables, their corresponding optimal values can 
be obtained using the equality constraints. The dependent variables which are 
eliminated from the optimization process are called the basic variables, while the 
remaining variables are called nonbasic variables (Kalyanmoy, 2004).

2.5.7 Sequential Quadratic Programming

The sequential quadratic programming (SQP) is the approach chosen by a number 
of software packages like MATLAB, OPTIMA and NPSOL etc. for the optimiza-
tion problem. SQP can be regarded as a generalization of Newton’s method for 
unconstrained optimization. SQP estimates the step away from the current point by 
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minimizing a quadratic model of the problem. It replaces the objective function 
with the quadratic approximation and replaces the constraint functions by linear 
approximation. Boggs and Tolle (1995) provide a general survey of the SQP.

2.5.8 Interior-Point Methods

Interior-point methods have been inspired by Karmarkar’s algorithm (Karmarkar, 
1984) for linear programming. Different to some other popular methods, it achieves 
an optimal solution by traversing the interior of the feasible region, rather than 
around its surface. The predictor-corrector technique proposed by Mehrotra (1992) 
is the base of the current efficient implementation. The performance of the current 
implementations depends heavily on the efficient code for factoring sparse sym-
metric matrices.

2.5.9 Optimization Software

Generally speaking, the optimization tools are already included in a number of 
popular numerical software like Matlab and Mathematica. The Optimization 
Toolbox of the Matlab provides widely used algorithms for standard and large-scale 
optimization of both constrained and unconstrained problems. The toolbox includes 
functions for linear programming, quadratic programming, nonlinear optimization, 
nonlinear least squares, solving systems of nonlinear equations, multi-objective 
optimization, and binary integer programming. Mathematica’s optimization tools 
are also very useful in optimization studies.

The NEOS Guide: Optimization Software provides a comprehensive listing of 
the optimization software with brief description:

http://www-fp.mcs.anl.gov/OTC/Guide/SoftwareGuide/
Arnold Neumaier has listed a number of global optimization codes in the public 

domain at his web site Global Optimization Software:
http://www.mat.univie.ac.at/∼neum/glopt/software_g.html#bb_codes



Chapter 3
Advances in Genomic Experiment Techniques

3.1 Single Nucleotide Polymorphisms (SNPs)

3.1.1  Laboratory Experiments for SNP Discovery 
and Genotyping

The experimental designs in the laboratory for the SNP analysis can be grouped 
into two main types of methods (Kwok, 2002). The first ones are those for the 
detection of the mutation and SNP. These include methods like the denaturing high-
performance liquid (dHPLC) (Xiao and Oefner, 2001), single-strand conformation 
polymorphism (SSCP) (Orita et al., 1989), conformation-sensitive gel electro-
phoresis (CSGE) (Gonen et al., 1999; Oto et al., 1993), and chemical cleavage 
(Ellis et al., 1998) and lastly the direct DNA sequencing. This direct DNA is in fact 
the gold standard for mutation detection and single nucleotide polymorphism dis-
covery, even though it is relatively laborious in comparison with other methods 
(Taillon-Miller et al., 1999).

Another type of the methods is for the genotyping of the SNPs detected. These 
include: Taqman assay (Holland et al., 1991), single-base extension approaches 
(Hacia, 1999), pyrosequencing (Ahmadian et al., 2000; Alderborn et al., 2000), 
ligation (Nilsson et al., 2001), Invader assay (Ryan et al., 1999), primer extension 
with mass spectrometry detection (Karas and Hillenkamp, 1988; Buetow et al., 
2001), and molecular beacons etc. The molecular beacons (Tyagi et al., 1998; 
Marras et al., 1999) work with the fluorescent colors, which are generated in sealed 
amplification tubes, for typing the single nucleotide polymorphism. The molecular 
beacons are especially suited for the SNP analysis, because their ability for the rec-
ognitions of the targets is of much higher specificity than traditional oligonucleotide 
probes. Besides the above discussion of the laboratory works for the discovery and 
the genotyping of SNPs, we will also talk briefly about the computational efforts 
for the discovery of SNPs in the following section.

Sio-long Ao, Data Mining and Applications in Genomics, 39
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3.1.2 Computational Discovery of SNPs

Various computational tools have been developed for the SNP discovery. This 
approach can be divided into four major steps (Barnes, 2003). First, in the identifi-
cation step, highly similar sequences from individuals are figured out. This can be 
achieved with the BLAST program etc. The second step is to avoid the existence of 
spuriousness of the similarity by the program REPEATMASKER. The program can 
mask the high copy number repetitive elements. In the third step, the base-wise 
multiple alignments of the sequences are constructed (Marth et al., 1999). Lastly, 
the sequences from step 3 that are of base-to-base multiple alignments are scanned 
for nucleotide differences. Both freeware and commercial programs are available 
for this computational detection of SNPs. Among these, PolyBayes, PolyPhred and 
Sequencher are the popular ones.

3.1.3 Candidate SNPs Identification

A candidate SNP is a SNP that has a potential for functional effect. It includes 
SNPs in regulatory regions or functional regions, and even in some non-synonymous 
regions. There exist different methods for selection of such SNPs. It can be identi-
fied by eye with the human genome browsers. This can give us the detailed study 
but is limited to small focus loci only. On the other hand, automated programs can 
be employed too.

3.1.3.1 Gene-Finding Methods

In many experiments and analysis, it is necessary to have the information about the 
genes of a genome, which can be found with both laboratory methods and compu-
tational methods (Salzberg et al., 1998). Computational methods are comparatively 
fast and cheap, but may not be as accurate as the laboratory methods. In the laboratory 
sequencing, the complementary DNA (cDNA) sample is sequenced to generate the 
expressed sequence tag (EST). The cDNA comes from the RNA that is from the 
transcription of the genes, and that is extracted from the cytoplasm and copied back 
into DNA using an enzyme called reverse transcriptase. In this process, the RNA is 
captured only after the introns have been spliced out and thus it can give us a very 
accurate picture of the encoding regions. EST sequencing projects have already 
generated many ESTs from humans and these datasets provide direct biological 
evidence for the gene regions. There have been efforts for constructing assemblies 
of these gene fragments information to obtain a complete coding region sequence 
(Adams et al., 1995; Boguski and Schuler, 1995).

Among the computational methods, there are different approaches for gene finding. 
The direct approach is to locate exactly where the following four signals can be found. 
These signals are the start codon, the donor sites (the beginning of each intron), the 
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acceptor sites (the end of each intron), and the stop codon. If all of these signals can 
be identified correctly, we can have the protein product accurately. Nevertheless, the 
identification of these signals itself can not be completely accurate.

There exist other methods for assisting the determination of the coding regions. 
Content scoring methods can analyze larger sequence regions for other statistical 
patterns. Many of these methods have utilized the observation that codon frequency 
is different in coding and non-coding regions. Another approach is to identify dif-
ferent regions with the computation of their respective entropy (information content). 
The content has been shown to be different among different types of regions. Data 
mining tools like neural network, hidden Markov model, decision tree and rule-
based algorithms have been employed for this gene finding task.

3.1.3.2 Polymorphisms in Coding Regions vs. Non-coding Regions

In the candidate SNP identification process, it may be helpful to take into account 
whether the SNPs are in the coding regions or in the non-coding regions. This 
information about the coding regions (genes) and non-coding regions can be 
obtained with the above gene-finding methods. The non-synonymous changes in 
coding regions of genes cause the alternations in amino acid sequences. The amino 
acid variants have accounted for a large amount of diseases. These coding polymor-
phisms can affect the protein folding, active sites, protein-protein interactions and 
its stability. Thus, it is clear that the SNPs in the coding region are important for the 
analysis. Nevertheless, polymorphisms in other regions may be of significance too. 
For example, variants in regulatory regions may change the transcription factor 
binding sites. Polymorphisms in the untranslated regions (UTR) of mRNA may 
change its stability and, it may even be true that polymorphisms in the introns can 
change the splicing efficiency.

3.1.4 Disease Studies with SNPs

3.1.4.1 Main Disease Types

A common type of diseases is the Mendelian disorder, which is also called single-
gene or monogenic disorder (Pevsner, 2003). Their main causes are mutations in 
single genes in the human genome. Examples of this kind of disorders include 
hemophilia A, color blindness and breast cancer (Scheuner et al., 2004).

Another common type of diseases is the complex disorder, such as the diabetes, 
high blood pressure, obesity and cardiovascular disease. They are caused by the 
defects that occur in multiple genes. The complex disease is also called multifactorial, 
meaning that they are caused by both genetic and environmental factors. Another 
characteristic of the complex diseases is that the susceptibility alleles are of high 
population frequency.
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3.1.4.2 Relationships Between Diseases and SNPs

It is estimated that about 99.9% of two selected genomes of the same gender are the 
same. It is the remaining 0.1% differences in the genome that arise the DNA 
sequence variations. They determine the individuality among the human. Among 
these genetic variations, SNP is the most common genetic variation in the human 
genome. It is a challenging task to figure out the relationship between the SNPs and 
the various diseases (Wang and Moult, 2001). SNPs exist in both the coding region 
of the genes and other non-coding regions, and different kinds of the SNP variations 
can provide different useful information about the diseases in different ways:

1. Functional variation refers to the situation when the SNP is with a nonsynony-
mous substitution in a coding region;

2. Regulatory variation happens when the SNP is in a non-coding region, but it can 
influence the properties of gene expressions (Cowles et al., 2002);

3. Associations of the SNP with the disease become useful when there are some 
SNPs close enough to the mutations that cause the diseases. These SNPs can then 
be utilized in the association studies with the diseases (Sherry et al. 2000);

4. Construction of the haplotype maps becomes possible with the collection of 
the information of the SNPs. The map is helpful for selecting SNPs that can 
be informative for explaining the differences in different ethnic groups and 
populations.

3.2 HapMap Project for Genomic Studies

3.2.1 HapMap Project Background

Mutation databases of the human genome are becoming more and more important 
in different areas like health care (Taylor et al., 2005). The mutation databases can 
be divided into general mutation databases and locus-specific mutation databases 
(LSDBs). The general mutation databases include Online Mendelian Inheritance in 
Man (OMIM), Human Gene Mutation Database (HGMD), Human Genome 
Variation Database (HGVbase), dbSNP database and HapMap project database etc. 
For the LSDBs, the focus is on the variation within a single gene, and, it is usually 
run by medical experts in that particular gene or phenotype. It has been estimated 
that there exists over 270 LSDBs on the World Wide Web.

In the HapMap project, it has been planned to find out the genetic similarities 
and differences in human genomes (HapMap, 2005). It is also to compare the 
genetic sequences among different individuals for locating chromosomal regions 
where genetic variants are shared. In order words, the HapMap can be regarded as 
a catalog of common human genomic variants. With the availability of this infor-
mation freely, it will enable the researchers to figure out genes involved in diseases 
and to estimate individual responses to medications and environmental factors.



The HapMap project is a multi-country collaboration of the scientists from 
Canada, China, Japan, Nigeria, the United Kingdom and the United States. The 
University of Tokyo and Health Sciences University of Hokkaido in Japan are 
responsible for 24.3% of the genome. Wellcome Trust and University of Oxford 
in United Kingdom are responsible for 23.7% of the genome. McGill University 
in Canada takes care of the 10.1% genome. The Chinese HapMap Consortium in 
China is responsible for 9.5%. Within this consortium, Hong Kong HapMap 
group is doing the genotyping of a total of 2.5% genome. Harvard, Johns 
Hopkins, MIT and UCSF etc., in United States are doing the genotyping of a 
total of 32.4% genome. Cold Spring Harbor Laboratory in New York does the 
role of the data coordination center, with the funding from the US National 
Institute of Health.

Different DNA samples were taken from blood samples of volunteer donors in 
the HapMap project. The donors of total 270 individuals come from the following 
populations: Han Chinese in Beijing (HCB), Japanese in Tokyo (JPT), Yoruba in 
Ibadan of Nigeria (YRI), and Utah residents of US with ancestry from northern 
and western Europe (CEU). The samples are identified by which population they 
come from, even though no medical or personal information was disclosed. 
Samples of different populations are needed here, even though it is true that, in one 
human population, we can find most of the common haplotypes in human chromo-
somes. It is because, the frequencies of any given haplotype may be different 
among different populations, and some new haplotypes may exist in just a single 
population. Thus, it becomes necessary to identify the haplotype information in 
various populations.

3.2.2 Recent Advances on HapMap Project

The project formally began in October 2002 (HNGRI, 2005), and it was planned 
at that time that, by September 2005, it would produce the map of common pat-
terns of human genomic variation. By the end of February 2005, 7 month ahead 
of the target date, the group completed the first draft of the human haplotype 
map (HapMap). It consists of 1 million markers (SNPs) of genetic variations. 
The total genotyped SNPs for population CEU totaled 1,073,663 on 1st March 
2005. The figure for HCB is 1,044,686, that for JPT is 1,044,416 and that for 
YRI is 1,034,205. They are genotyped with a SNP density of 1 every 5 kb in all 
populations under study. The data can be downloaded freely from HapMap’s 
official site (www.hapmap.org). This can enable the scientists to begin analysis 
of the variations among individual genomes. This is impossible with just the 
human DNA genomic sequence, but come true when the consortium has com-
pared different genomic sequences of different human beings. The consortium 
published the comprehensive analysis results data in 2005 (HapMap, 2005).

After this completion of the first draft in its first phase, the consortium’s goal is 
set to get an improved version of the haplotype map of much higher density. This 
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is achievable because of the development of the high-speed, high-throughput 
genotyping capacity technology. Perlegen Sciences, Inc., of Mountain View, 
California US, is responsible for the testing of the 4.6 million additional SNPs and 
this new information will then be merged with the current map. This effort becomes 
possible with the grant of US$6.1 million from the National Human Genome 
Research Institute (NHGRI). NHGRI is part of the National Institutes of Health 
(NIH). In this second phase, the density of genotyping the SNP increases fivefold 
in the human genome. By its completion, it is estimated that every known catalog 
of human variation on the HapMap samples can virtually be tested.

In July 20, 2006, the HapMap project released its phase II dataset, which con-
tains genotypes, frequencies and assays for bulk download. The data also includes 
genotypes from the Affymetrix 500k genotyping array. In the phase II, there existed 
3.28 million non-redundant SNPs for CEU population, 3.31 million for the CHB + 
JPT population, and 3.24 million for the YRI population (HapMap, 2006). The 
preliminary release of HapMap Phase 3, containing genotype and pedigree infor-
mation for 11 populations (including individuals in the original four from earlier 
phases of the project), is available on May 27, 2008.

3.2.3 Genomic Studies Related with HapMap Project

With the progress of the HapMap project, this can enable the researchers to have 
more information about the SNPs in the human genome. This leads to a number of 
publications related with the HapMap project. For example, the publication 
(International HapMap Consortium, 2005) is about the HapMap data, which con-
tain the information of more than 1 million SNPs in the human genome, the recom-
bination hotspots, a block-like structure of linkage disequilibrium and low 
haplotype diversity. It also showed how the HapMap can assist the design and 
analysis of genetic association studies. Thorisson et al. (2005) has presented guides 
for using the different tools available in the HapMap web page.

Clark et al. (2005) studied the ascertainment bias with the HapMap dataset, and 
concluded that its effect on the power erosion of association tests will likely be 
small. Bakker et al. (2005) has investigated the Tag-SNP selection for genome-wide 
association studies. It found that the power is robust to the completeness of the ref-
erence panel where the tags are selected. Myers et al. (2005) conducted the statisti-
cal analyses of genetic variation data for a high-resolution genetic map of the 
human genome. More than 25,000 recombination hotspots were found in the study. 
Smith et al. (2005) applied the HapMap dataset for the study on the relationship 
between sequence features and the degree of linkage disequilibrium in the genome. 
It was noticed that the variation in LD is roughly similar across populations. 
Nevertheless, the study of Weir et al. (2005) found that there exists substantial het-
erogeneity of genetic population structure among the populations of HapMap, even 
though there was also similarity between them.



3.3 Haplotypes and Haplotype Blocks

3.3.1 Haplotypes

The specific set of alleles in a region of a single chromosome that has not been 
broken up by recombination is called haplotype. The haplotype regions are sepa-
rated by regions of recombinations. The haplotypes in the human genome are the 
products of the reproduction and thus are determined by the history of the popula-
tion. New haplotype can be formed with additional mutations or by recombination 
of the parental chromosomes. Because of the limitation of their existing time, these 
new haplotypes usually have not spread widely across different populations and are 
restricted to their original population.

It has been estimated that the number of generations since the most recent com-
mon ancestor of any two humans are of order 104 generations (Intl. HapMap 
Consortium, 2003). Comparatively, the mutation rate is very low, of the order 10−8 
per site per generation, so nearly every variable site is the results of a single histori-
cal mutational event. As a result, each new allele is initially associated with the 
other alleles of the same chromosomal background. Then, segments of the chromo-
some are shuffled through the recombination events generations after generations.

The following example is a simple illustration of the formations of the haplo-
types. Let the two ancestral chromosomal regions concerned be represented by 
MMMMMMMMMM and FFFFFFFFFF. After many generations of recombination 
events, we study five of the child chromosomal regions here:

1. MMMFFMMMMF
2. MFFFMMFFFM
3. MMMFMMMMMF
4. MFFMMMMFFM
5. MMFFMMFFMM

Assume that there exists a disease D in chromosome 1 and 3 and the disease gene 
is located between the second and third position. Then, we can see that the MMM 
segment of the first to third position of the chromosome 1 and that of the chromo-
some 3 are identical and the correlation between the disease D and these MMM 
alleles are 100% in this example.

3.3.1.1 Haplotypes and Linkage Disequilibrium

The association studies are traditionally done with the individual genetic markers for 
computing the linkage disequilibrium (LD). Nevertheless, these traditional approaches 
often give results of an erratic and non-monotonic picture. SNPs have become the 
promising markers for association studies. Daly et al. (2001) began the studies of the 
haplotypes for the LD analysis and compared these results with the results from 
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single-marker LD. The study is on samples of 129 trios from a European-derived 
population. It is shown that the noises, which are presumably caused by the marker 
history etc., disappear when using the haplotype-based LD. Daly’s results also show 
that there exists a picture of discrete haplotype blocks that are of order tens to hun-
dreds of kilobases. Inside each block, there is only a little diversity, while between the 
blocks there are punctuations that show the potential sites of recombination.

Daly et al. have observed that, over a long distance, most haplotypes can be cata-
loged into a few common haplotype categories. Thus, Daly et al. employed the 
Hidden Markov Model (HMM) for their study. Daly et al. defined the haplotype 
categories as the states of the HMM and assigned observed chromosomes to those 
hidden states. The transition probability in each interval is estimated with an EM 
algorithm. With the method, the maximum-likelihood assignment to the haplotype 
categories for each position can be obtained. The maximum-likelihood estimates of 
the historical recombination can also be found.

The LD between pairs of markers can be calculated with the standard measures 
like D’ (Lewontin, 1964) and r2 (Hill and Robertson, 1968; Ohta and Kimura, 1969). 
Methods like ‘sliding window’ LD profiles (Dawson, 2000), LD unit maps (Maniatis, 
2002), haplotype blocks and estimations of meiotic chromosomal recombination 
rates (Hudson, 1987; Fearnhead and Donnelly, 2001) are being developed for the 
identification of the high LD and haplotypes in chromosomes. After the analysis of 
the LD with the HapMap data in the first phase, low LD regions will be identified 
and further genotyping may be needed in these regions for the genetic details.

3.3.1.2 Measuring the Haplotype Diversity

Clayton (2001) studied the measuring of the haplotype diversity of the diallelic 
cases. Diallelic allele means that we only take into consideration if it is a major or 
minor allele, and we can represent them with codes 0 and 1. Define each observa-
tion, i = 1, …, N, of a haplotype, as a vector z

i
 = {z

ij
, j = 1,…,S} of alleles, where S 

is the total number of linked polymorphic markers. Clayton defined the locus diver-
sity as the total number of differences between all N2 pair-wise comparisons between 
the observations (Escoffier, 2001). For the locus j, the diversity is as followed:
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where the difference between two alleles is (z
ij
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kj
) and equals zero if the observa-

tions i and k are the same. It equals ±1 if they differ. Assume that the number of 
chosen htSNPs is H. Let G denote the total number of groups that are defined by 
haplotypes of these htSNPs. And denote these ht-haplotype groups as H

g
, g = 1, …, G. 

Then, the residual diversity for the locus j is:
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The proportion of diversity “explained” (PDE) by the set of htSNPs, at the locus j, 
is given by:

P
R
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Similarly with the above definitions at the individual locus j, the diversity for the 
haplotype as a whole can be defined as:
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The overall proportional of diversity explained is given by:

P
R

D
= −1

Clayton has implemented the above computation of the haplotype diversity in the 
program hapdiv. It is written in a statistical macro language called Stata. In its 
default setting, the subset size is set to a maximum number of five. If a larger 
number of subsets are set, the computation time will become longer and may even 
be infeasible for exhaustive subset search.

3.3.2 Haplotype Blocks

The idea of the haplotype blocks has come from studies like that of Gabriel et al. 
(2002). Gabriel et al. showed that the human genome can be divided into haplotype 
blocks, which are defined as regions of little historical recombination and of only a few 
common haplotypes. Gabriel et al. defined a haplotype block as a region over which 
only a small percentage (<5%) of comparisons among informative SNP pairs show 
evidence of historical recombination. The 5% tolerance level is chosen as many other 
biological forces besides recombination can disrupt haplotype patterns. For example, 
these biological forces can be from recurrent mutation, gene conversion etc.

The study of Gabriel et al. (2002) is a part of the SNP Consortium Allele 
Frequency Projects. In their work, the haplotype patterns across 51 autosomal 
regions were characterized. Gabriel et al. used samples of the European, Asian and 
African American from the Coriell Cell Repository (http://locus.umdnj.edu/ccr/). 
The expectation-maximization (EM) algorithm by Excoffier and Slatkin was 
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employed for the haplotype frequencies within the blocks. Gabriel et al. addressed 
the questions of the average size of the haplotype blocks and studied the genetic 
details in each block, like the size and diversity of haplotypes within the blocks.

Another method for studying the genetic details is the construction of the LD 
maps of the genome. The first LD maps for identifying the hot and cold spots of 
recombination in the genome were proposed by Maniatis and colleagues (Maniatis 
et al., 2002). The maps are based on the Malecot equation. Maniatis et al. replaced 
the time variable (the number of generations) there with the distance variable (dis-
tance between two SNPs). The derivation of this LD map is parametric and requires 
the estimation of three coefficient parameters.

3.3.3  Dynamic Programming Approach for Partitioning 
Haplotype Blocks

Zhang et al. (2002) have developed a dynamic programming approach for the par-
titioning of the haplotype blocks. It is to minimize the number of haplotype tagging 
SNPs needed for accounting most of the common haplotypes in each block. The 
algorithm has the advantage that any measure of the haplotype quality can be used 
in the algorithm. Compared with the greedy method used in study of Patil et al., the 
number of htSNPs identified by the dynamic programming is 21.5% smaller. The 
number of blocks is also smaller, with a reduction of 37.7%.

In the dynamic algorithm, Zhang et al. define the common haplotype as those 
that occur more than once in a block. It is required that a significant percent of the 
haplotypes in each block are common haplotypes. With the blocks defined, the tar-
get is to minimize the number of htSNPs that can distinguish at least α percent of 
the haplotypes in the block. α is called the coverage of the htSNPs. This minimiza-
tion problem is known as Minimum Test Set problem, and it is shown to be a 
NP-complete problem (Garey and Johnson, 1979).

Mathematically, let r
1
, r

2
,…,r

n
 be the SNPs (Zhang et al., 2002b). A Boolean 

function block can be defined as block (r
i
, r
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,…,r
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haplotypes formed by the SNPs r
i
, r

i+1
,…,r

j
 are presented more than once. Otherwise, 
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) is set to a value of zero. Let f(⋅) be the number of htSNPs in 

a block. Then, when the sequence is partitioned into blocks B
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, the total 

number of htSNPs are given by . Let S
i
 be the number of htSNPs for the optimal 

block partition of the first j SNPs, r
1
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n
, and define S

0
 = 0. Zhang et al. have 

developed the recursive algorithm of the dynamic programming as:
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When there exist several block partitions of equal minimum number of htSNPs, the 
one with the minimum number of blocks is preferred. Let C

j
 be the number of 

minimum number of blocks of all block partitions that require S
j
 htSNPs. Then, 

another recursive step can be applied:
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This recursive step can compute the minimum number of blocks in the partition.

3.4 Genomic Analysis with Microarray Experiments

In each eukaryotic cell, it is estimated that there are between 5,000–60,000 protein-
coding genes (Pevsner 2003). At any time during the transcription process of DNA 
into RNA, only a subset of the genes is expressed as mRNA transcripts. These are also 
called gene expression and the set of expressed genes in the genome are sometimes 
called the transciptome. There are various ways for the regulation of the gene expres-
sion, like by the regions, the development stages, disease states and gene activity etc.

3.4.1 Microarray Experiments

Generally speaking, microarray is a solid substrate where the DNA is attached to in 
an ordered manner at high density (Geschwind and Gregg, 2002). Among the high-
throughput methods of gene expression, the microarray has been the most widely 
used one for assessing the differences in mRNA abundance in the biological sam-
ples. The mRNAs are produced in the first step of the gene expression, the tran-
scription process, and the mRNAs are relatively simple to study in high-throughput 
modes. With the work of Patrick Brown and his colleagues (DeRisi, 1996), micro-
array has been gaining its popularity.

In a single microarray experiment, the expression levels of as many as thousands 
of genes can be measured simultaneously. Thus, it can enable the genome-wide 
measurement of gene expression. This is a large improvement over the situation of 
“one gene per experiment” in the past. As a result, microarray has been found use-
ful for different types of biological researches, for example, tissue-specific gene 
expression, developmental genetics, genetic diseases, complex diseases, and envi-
ronmental monitoring etc.

A typical microarray experiment consists of the following five steps (Amaratunga 
and Cabrera, 2004):

(a) Preparation of the microarray: Drops of purified single-stranded DNAs is 
placed onto glass microscope slide.

(b) Preparation of the labeled sample: mRNAs are purified from the sample con-
tents, and then reverse-transcribed into more stable cDNA or cRNA.

(c) Hybridizing of the labeled sample: Label sample is then sealed in hybridization 
chamber for hybridization reactions.

(d) Scanning of the microarray: This is to check the amount of labeled sample 
bound to each spot of the microarray.
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(e) Data analysis of the scanned image: The scanning product of the microarray is 
a gray scale image, and image-processing tools are needed to convert the image 
into spot intensity measurements for further data analysis.

Multi-channels cDNA microarray and oligonucleotide array (pioneered by 
Affymetrix) are two popular microarrays. New microarray technologies are also 
emerging, for example, the bead-based microarray technology.

3.4.2 Advances of Genomic Analysis with Microarray

With the advances in DNA microarray technology (Causton et al., 2003), we can 
have the gene expression values at different time points of a cell cycle. In the sim-
plest case of time series expression analysis, two time points are taken: before and 
after an event. A more comprehensive study will involve the taking of values at dif-
ferent periods. The frequencies of the time points can have ranges from several 
minutes to several hours.

Various methods like self-organizing maps (Nikkilä et al., 2002), k-nearest 
neighbor (Acta, 2001) and hidden Markov models (Ji et al., 2003) have been 
employed for the microarray analysis. These studies mainly focus on the clustering 
and the measurement of the similarity among the different expressions. For the 
gene expression time series analysis, methods like warping algorithms (Aach and 
Church, 2001), the comparison of similarity functions of the genes (Butte et al., 
2001), the identification of gene regulatory networks with graph method (Chen 
et al., 2001), and dynamic models (Dewey, 2002) etc., have been developed.

In the literature, different methods have been developed to analyze gene expres-
sion time series data, see for instance (Costa et al., 2002; Yoshioka and Ishii, 2002; 
Tabus and Astola, 2003; Syeda-Mahmood, 2003; Wu et al., 2003; Jiang et al., 2003; 
Futschik and Kasabov, 2002; Kesseli et al., 2004; Tabus et al., 2004; Sakamoto and 
Iba, 2001; Zhang et al., 2003; Craig et al., 2002; Langmead et al., 2002, etc.). 
However, their approaches are different from our proposed PCA-NN modeling for 
gene expression time series. About half of these researches have their focus on 
building special clustering algorithms for these time series data, while the others 
have tackled the problems of inferring systems of linear differential equations, the 
visualizing of the gene data and the determination of their periodicity.

As said above, some special clustering algorithms have been employed to 
explore the gene expression time series data from the microarray experiments. 
Costa et al. (2002) have proposed the symbolical description of multiple gene 
expression time series. Each variable will take as a set of values in a time series and 
the results are compared with Self-Organizing Map algorithm. Yoshioka and Ishii 
(2002) have employed a clustering method based on mixture of constrained PCA. 
It can classify genes with similar expression patterns into the same cluster regardless 
of their magnitude (scale). In the study (Tabus and Astola, 2003), Tabus and Astola 
have handled the problem of the non-uniformly sampling of the gene expression 
time series. The minimum description length model is fitted to each gene and then 



the optimum parameters are used for clustering the genes. The extrapolation of the 
gene expression time series data by the minimum description length model can be 
applied in our methodology too for non-uniformly sampling data.

Syeda-Mahmood (2003) has studied a clustering algorithm that uses the scale-
space distance as a similarity metric. The scale-space analysis is to detect the sharp 
twists and turns of the gene time series and to form the similarity measure between 
time profiles. Wu et al. (2003) have developed a procedure for the determination of 
the minimal number of samples or trials required in a microarray experiment for 
clustering. The procedure is an incremental process that will terminate when the 
evaluation of the results of two consecutive experiments of k-means clustering 
shows they are sufficiently close. Jiang et al. (2003) use a density-based approach 
to identify the clusters such that the clustering results are of high quality and robust-
ness. Futschik and Kasabov (2002) employ the fuzzy c-mean (FCM) clustering to 
achieve a robust analysis of gene expression time series. The issues of parameter 
selection and cluster validity are also addressed.

3.4.3 Methods for Microarray Time Series Analysis

The construction of genetic network from gene expression time series is tackled in 
(Kesseli et al. 2004; Tabus et al., 2004; Sakamoto and Iba, 2001). Kesseli et al. have 
employed monotonic time transformations (MTT) for inferring a Boolean network. 
Several different methods of clustering have been used to form different transforma-
tions. Tabus et al. build systems of differential equations for specifying the genetic 
networks. The structure of the networks is inferred by operating with the exact 
solutions of the linear differential equations, which are obtained through the eigen-
value decomposition of the system matrix. Sakamoto and Iba also use a system of 
ordinary differential equations as a model of the network and infer their right-hand 
sides by using genetic programming (GP) instead. The least mean square (LMS) 
method is used along with the GP to explore the search space more effectively in 
the course of evolution. In these systems of linear differential equations, there is a 
strong assumption that the genetic interactions are linear. Instead, with our PCA-
NN algorithm, we can have the advantage of the nonlinear flexibility of the neural 
network. Also, we have employed the AIC test to decide the optimal lag length used 
in our models, whereas, in the above models, only one lag length of each gene 
expression value change is included. The lag length refers to the number of lags 
(the number of previous values of the variable) used in the model.

The visualizing of the gene expression time series is discussed in studies (Zhang 
and Zhang, 2003; Craig et al., 2002). Zhang et al. have introduced the first Fourier 
harmonic projection (FFHP) to translate the multi-dimensional time series data into 
a two-dimensional scatter plot. The spatial relationship of the points reflects the 
structure of the original dataset and the relationships among clusters become two-
dimensional. Craig et al. propose the display technique that operates over a continuous 
temporal subset of the time series, with direct manipulation of the parameters defining 
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the subset. Its advantage is that the number of elements being displayed will not be 
reduced.

Langmead et al. (2002) formulate the task of estimating an expression profile’s 
periodicity and phase as a simultaneous bicriterion optimization problem. The 
maximum entropy-based analysis technique is employed for extracting and charac-
tering rhythmic expression profiles, and is found to work better than the Fourier-
based spectral analysis for signals in the microarray experiments. Yeang and 
Jaakkola (2003) explain time correlations between gene expression profiles through 
factor-gene binding information to estimate latencies for transcription activation. 
This can estimate latencies for transcription activation. The resulting aligned 
expression profiles are subsequently clustered and again combined with binding 
information to determine groups or subgroups of co-regulated genes.



Chapter 4
Case Study I: Hierarchical Clustering 
and Graph Algorithms for Tag-SNP Selection

More than 6 million single nucleotide polymorphisms (SNPs) in the human genome 
have been genotyped by the HapMap project by the end of July 2006 (HapMap, 
2006). Although only a proportion of these SNPs are functional, all can be consid-
ered as candidate markers for indirect association studies to detect disease-related 
genetic variants. The complete screening of a gene or a chromosomal region is 
nevertheless an expensive undertaking for association studies. A key strategy for 
improving the efficiency of association studies is to select a subset of informative 
SNPs, called tag SNPs, for analysis (Johnson et al., 2001).

4.1 Background

4.1.1 Motivations for Tag-SNP Selection

The studies of the large-scale genotyping of single nucleotide polymorphisms can 
date back before the launch of the HapMap Project. Wang et al. (1998) studied the 
feasibility of the large-scale genotyping of single-nucleotide polymorphisms in the 
human genome with a large-scale survey of 2.3 megabases of human genome. 
Among these 2.3 megabases, there exist about 3 Mb of protein coding regions and this 
is about 2.5% of all the coding regions of human genes, with total length of about 
120 Mb in different parts of the genome. They did the examination with gel-based 
sequencing and high-density variation-detection DNA chips, and developed proto-
type genotyping chips that can simultaneously genotype 500 SNPs. In their study, a 
total of 3,241 candidate SNPs were identified and a genetic map was constructed that 
could show the location of 2,227 out of these 3,241 SNPs. Wang et al. demonstrated 
that the large-scale identification of human SNPs is feasible in this work.

With the progresses of different SNPs projects like the HapMap project, results 
of the large-scaled genotyping of SNPs in genome have been becoming available. 
As it is very expensive to genotype all these SNPs for the disease analysis each time, 
it becomes necessary to select the tag SNPs for these analysis. Nevertheless, the 
selection of the tag SNPs is not a simple task. Methods like random selection and 
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evenly-space selection are not efficient, as empirical studies have shown that the 
extent of association between nearly markers can vary largely in different genomic 
regions (Jeffreys et al., 2001; Dawson et al., 2002; Taillon-Miller et al., 2000).

When SNP alleles co-inherit on the haplotypes, this can lead to the associations 
between these alleles in the population. This is what we call linkage disequilibrium 
(LD). As there is more likely recombination between two SNPs that are far away 
from each other, these associations between SNPs will usually decline with dis-
tance. There are many empirical studies that have shown strong associations (high 
LD) between nearby SNPs in the human genome (Jeffreys et al., 2001; Reich et al., 
2001; Abecasis et al., 2001; Dawson et al., 2002). With the strong associations in a 
genome region, it means that only a few haplotypes or tag SNPs can explain most 
of the variation among people in the region. In other words, in some regions of 
strong LD, a small number of suitable SNPs are enough for representing the whole 
sets of SNPs in the regions, whilst, in region of low LD, more SNPs are required to 
serve as tag SNPs. With the suitable choice of the tag SNPs, it can minimize the 
cost of genotyping while at the same time retain as much information about the 
genetic variations as possible.

Recombination is a significant source for the breaking down of the linkage dise-
quilibrium (Kwok, 2002). In regions with less recombination, the genetic variation 
there is usually much lower. In the CpG dinucleotide regions where the mutation is 
more likely to occur, the density of SNPs there is much higher than other regions 
of the genome. Only 1 to 2% of the genome is the CpG regions, but about 25 to 
30% of the SNPs are found in these regions (Halushka et al., 1999). Thus, it is 
important to choose a suitable amount of tag SNPs for representing these regions 
of highly different SNP densities.

In the association studies of the diseases and the SNPs, the number for SNPs 
required can be in the range of several hundreds to thousands. Thus, it is necessary 
to develop cost-effective methods that can deal with the large-scale analysis of the 
diseases with SNPs.

4.1.2 Pioneering Laboratory Works for Selecting Tag SNPs

Johnson et al. (2001) have studied the effectiveness of choosing a small amount of 
SNPs for the haplotype tagging to identify common disease genes. Johnson et al. 
have 384 samples from European individuals and have scanned 135 kb of DNA 
from nine different genes. A total of 122 single nucleotide polymorphisms are gen-
otyped. It is found that the knowledge of the common haplotypes and the haplotype 
tagging SNPs can explain the complex patterns of LD between adjacent markers. 
By working with the htSNPs, the genotyping cost can be reduced significantly (34 
htSNPs are required for the total 122 SNPs in this work). Key fine-mapping data 
within regions of strong LD can also be obtained.

Johnson et al. have demonstrated that there is lack of correlation between the 
level of LD and the physical distance in regions of distances less than 100 kb. 



If instead, the underlying haplotypes are characterized, it can be clearly defined for 
the relationships between the alleles in these regions. Johnson et al. have estimated 
that, for an initial gene-based cataloging of the htSNPs, all the regions of the genes 
and at least 3 kb of up- and downstream sequences of each gene should be 
sequenced in a minimum of 30 individuals. This would give a result of larger than 
95% power for detecting all variants of frequencies of at least 5%.

In the Gabriel et al. study (2002), the statistical power of the haplotype frame-
work is found to be substantial in the association studies of common genetic varia-
tion across each region. Gabriel et al. have found that the correlation of the SNPs 
inside each block is high and that only a fraction of the total SNPs in the block will 
be needed for testing in a medical research. A major attraction of the haplotype 
block methods is the ability to identify regions (blocks) where only a few common 
haplotypes can capture most of the genetic variation, such that only a small number 
of haplotype tagging SNPs (htSNPs) are required for genotyping. Gabriel et al. 
have estimated that for the human genome, a total of 300,000 to 1,000,000 well-
chosen htSNPs would be needed. These pioneering works have leaded to efficient 
tag-SNP selection methods that are based on the determination of the haplotypes 
and haplotype blocks. It is found relatively easy to determine whether a haplotype 
block is associated with a disease or not. It is also found that a relatively small 
number of SNPs is enough for marking the common haplotypes in each block.

4.1.3 Methods for Selecting Tag SNPs

4.1.3.1 Types of Tag-SNP Selection Methods

As described in the previous discussion, there exist redundant information in the 
whole set of SNPs and it is expensive to genotype this whole set. Different 
approaches have been developed to reduce the set of SNPs that are to be geno-
typed. These selected subsets are called haplotype tagging SNP (htSNPs) or tag 
SNPs. The approaches can be divided into two main categories (CIGMR, 2005): 
(1) The block based tagging, and (2) The entropy based tagging (or called non-
block based tagging).

With the block based tagging, we need to define the haplotype block first. Inside 
each haplotype block, the SNPs are in strong LD with each other, while, for SNPs 
of different blocks, they are of low LD. The disadvantage of this type of tagging 
SNPs is that the definition of the haplotype block is not unique and sometimes 
ambiguous, as we will see later. Also, it is true that the coverage of the haplotype 
block is not enough in some genomic region.

Because of the problems associated with the haplotype blocks, alternative meth-
ods have been developed and they can collectively called entropy based tagging. 
The term entropy is used loosely as the measure for assessing the amount of infor-
mation that can be captured or represented by these tag SNPs. In this approach, it 
is not necessary to define the haplotypes and then to define the haplotype blocks. 
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Instead, the goal of this approach is to select a subset of SNPs (the tag SNPs) that 
can capture the most information across the genomic region. Different multivariate 
statistical techniques have been applied to achieve this task. Byng et al. (2003) pro-
posed the use of single and complete linkage hierarchical cluster analysis to select 
tag SNPs. Hierarchical clustering starts with a square matrix of pair-wise distances 
between the objects to be clustered. For the problem of tag SNP selection, the 
objects to be clustered are the SNPs, and an appropriate measure of distance is 1 - R2, 
where R2 is the squared correlation between two SNPs. The rationale is this: the 
required sample size for a tag SNP to detect an indirect association with a disease 
is inversely proportional to the R2 between the tag SNP and the causal SNP.

4.1.3.2 Existing Programs for Tag-SNP Selection

There exist different software packages for the tag SNP selection. In the official 
web page of The Centre for Integrated Genomic Medical Research (CIGMR, 2005) 
of The University of Manchester, U.K., the following programs are listed with the 
program web addresses:

CLUSTAG: http://hkumath.hku.hk/web/link/CLUSTAG/CLUSTAG.html
HapBlock: http://www.cmb.usc.edu/msms/HapBlock/
htSNP: http://www-gene.cimr.cam.ac.uk/clayton/software/stata/htSNP/
htSNPer: http://www.chgb.org.cn/htSNPer/htSNPer.htm
SNPtagger: http://www.well.ox.ac.uk/∼xiayi/haplotype/
TAG ‘n’ TELL: http://snp.cgb.ki.se/tagntell/

Many of the above programs have been tested with samples of size about 100 
SNPs only. As an example, the TAG ‘n’ TELL v2.0 (the current version as on 16th 
April 2005) has stated on its web that it can handle with the number of markers up 
to 30. Besides our program CLUSTAG, all the other programs are based on the 
concept of haplotype block. Most of the software packages do not have the graphi-
cal outputs for displaying the tagging information, while the CLUSTAG has its 
graphical output in the hyper-text format that enables the users to display their 
CLUSTAG results on the web easily (Fig. 4.1).

The HapBlock program (Zhang et al., 2005) calculates the haplotype frequencies 
with the PL-EM algorithm (Qin et al., 2002). The PL-EM algorithm is performed for 
each set of consecutive SNPs so that they can from a potential block, rather than for 
the whole set of SNPs. The program has the options to choose three of the many 
definitions of the haplotype blocks and these three block definitions are basing on:

1. Common haplotypes (Patil et al., 2001; Zhang et al., 2002)
2. The LD measure with D’ (Gabriel et al., 2002) and
3. The four-gamete test (Wang et al., 2002)

The selection of haplotype tagging SNPs are based the power of these SNPs for 
distinguishing haplotypes. Another criterion is based on the haplotype diversity 
(Clayton 2001). The proportion of haplotype diversity is computed for a subset of 



SNPs over all SNPs in each block. The minimum set of SNPs are chosen with the 
limitation that at least a pre-defined percent of overall haplotype diversity can be 
explained by these chosen subset. Similarly, the programs htSNP, SNPtagger, and 
Tag ‘n’ TELL are also basing on this haplotype diversity. The program htSNPer 
also relies on firstly defining the haplotype blocks and then computes the haplotype 
tagging SNPs. The users can select four common methods to define the blocks. The 
program can select the haplotype tagging SNPs that cover most haplotypes within 
the block or that have the largest haplotype diversity. An advantage of the program 
is that it employs the Branch-and-Bound (BB) algorithm for accelerating the 
searching the haplotype tagging SNPs.

4.1.3.3 Motivations for Developing Non-block Based Tagging Methods

Meng et al. (2003) noticed that all the block-detecting methods can result in different 
block boundaries. In fact, the existence of the block is still conflicting (Couzin, 
2002). As a result, Meng et al. proposed a method that uses the spectral decomposition 

Fig. 4.1 Graphical output of the CLUSTAG
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to decompose the matrix of pairwise LD between markers. The selection of the 
markers is based on their contributions to the total genetic variation. Meng et al. 
applied the sliding window approach for dealing with large genomic regions.

In the analysis of the experimental data, Meng et al. found that, for the chromo-
some 12 dataset, when selecting 415 markers (63.9%) out of a total 649, the spec-
tral decomposition method can explain 90% of the variation. For the chromosome 
22 dataset that is used for association study with the CYP2D6 poor-metabolizer 
phenotype, 20 out of 27 markers are selected by the method and they are shown to 
retain most of the information content of the full data well.

Meng et al. have also pointed out the differences between the method and that 
based on the haplotype. It can be generalized to the comparison of methods based 
on two-locus LD (i.e., pairwise correlation between single-markers) and methods 
based on haplotypes. Haplotypes can provide more information than the pairwise 
LD measures, if the LD measure involving with more than two markers is making 
a significant contribution to the overall LD measure. If not, then, haplotype fre-
quencies are just linear combinations of pairwise LD frequencies. It has been found 
that, in the experimental study of chromosome 12 and 22, the LD based on the 
three-locus LD decays more quickly than the two-locus LD, and that the extent of 
three-locus LD is relatively small. Thus, it can justify the approach with two-locus 
LD of single-markers.

Meng et al. also noticed that the two-locus approach of the spectral decom-
position is of similar performance to that based the haplotypes. Nevertheless, the 
two-locus approach has the advantage that techniques, like sliding windows, can 
be applied for easing the computational burden, as this approach only requires 
the pairwise LD. The haplotype information is not required here, in contrast with 
the haplotype-based method, which requires the estimation of the haplotype fre-
quencies with the numerical methods like EM algorithms. The computational 
time for such algorithms will increase dramatically when the number of markers 
increases.

4.2 CLUSTAG: Its Theory

Our program CLUSTAG has been developed with the clustering algorithms of the 
multivariate statistics. A desirable property for a clustering algorithm for the tag-
SNP selection would be that a cluster must contain at least one SNP (the tag SNP) 
that is no more than the merging distance from all the other SNPs from the same 
cluster. If this is the case, then by setting a cutoff merging distance of C, one can 
ensure that no SNP is further than C away from the tag SNP in its cluster. In this 
sense, neither of the methods proposed by Byng et al. (2003) is ideal, since the 
single-linkage method does not guarantee the existence of a tag SNP with dis-
tance less than C from all SNPs in the same cluster, while complete-linkage is too 
conservative in that all SNPs have distance under C from all other SNPs in the 
same cluster.



4.2.1 Definition of the Clustering Process

In an m-clustering of a data set X, it is to group the partition of X, R, into m sets 
(clusters), C

1
, …, C

m
, such that the below conditions are satisfied (Theodoridis and 

Koutroumbas, 2003):

1. C
i
 ≠ Ø, i = 1,…,m

2. C Xi
i

m

=
=1
∪

3. C
i
 ∩ C

j
 = Ø, i ≠ j, i, j = 1,…,m

It is also required that the vectors inside a cluster C
i
 are more similar to each other, 

and less similar to the feature vectors of other clusters.

4.2.2 Similarity Measures

Similarity measures are needed to give us a quantitative comparison of how close 
the vectors are in the clustering process. A similarity measure (SM) s on X is 
defined as:

s X X: × → ℜ

such that it satisfies:

∃ ∈ℜ − < ≤ < +∞ ∀ ∈s s x y s x y X0 0: ( , ) , ,∞

and also

s x x s x X

s x y s y x x y X

( , ) ,

( , ) ( , ), ,

= ∀ ∈
= ∀ ∈

0

It should be noted that, if the similarity measure also satisfies the following two 
conditions, then it would be a metric SM (Theodoridis and Koutroumbas, 2003):

s(x,y)=s
0
 if and only if x = y

and

s x y s y z s x y s y z s x z x y z X( , ) ( , ) [ ( , ) ( , )] ( , ), , , .≤ + ∀ ∈

The distance (dissimilarity) measure d can be defined similarly, with:

d X X: × → ℜ

satisfying the conditions:

∃ ∈ℜ −∞ < ≤ < +∞ ∀ ∈d d d x y x y X0 0: ( , ) , ,
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and

d x x d x X( , ) ,= ∀ ∈0

and

d x y d y x x y X( , ) ( , ), ,= ∀ ∈

The above similarity measure and distance measure is for members within a set. 
Now, we are going to define the similarity measure between sets of data points. We 
will see later that hierarchical clustering utilizes such a measure in its clustering 
process.

Mathematically, let Sss be the similarity function between different sets, and let 
X

i
, X

j
 denote two sets of data vectors. The common similarity functions are:

1. The max similarity function:

S X X s x yss
i j

x X y Xi j
max

,
( , ) ( , )=

∈ ∈
max

where s is a similarity measure between two vectors.

2. The min similarity function:

S X X s x yss
i j x X y Xi j

min ,
( , ) ( , )=

∈ ∈
min

3. The average similarity function:

S X X
n n

S x yavg
ss

i j
X X x Xx X

i j ji

( , ) ( , )=
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∑∑1

where n
Xi

 and n
Xj

 are the cardinalities of the sets X
i
 and X

j
 respectively.

It can be noticed that the above definitions of the similarity functions are based 
on the similarity measures between two vectors. With the different definitions of 
the similarity measures between vectors, we can usually obtain different clustering 
results. Thus, by choosing the similarity measure carefully, one can have clustering 
results that fit a particular objective better. There have different works of applying 
the different clustering algorithms on the genome-wide microarray studies (for 
example, Mcshane et al., 2002; Datta and Datta, 2003). Later on, we will see how 
our proposed definition of minimax function for the tag-SNP selection can improve 
the clustering results of the single nucleotide polymorphisms.

4.2.3 Agglomerative Clustering

The clustering algorithms of the CLUSTAG are of agglomerative clustering, where 
the two clusters with the smallest inter-cluster distance are successively merged 
until all the objects have been merged into a single cluster. Different forms of 



agglomerative clustering differ in the definition of the distance between two 
clusters, each of which may contain more than one object. In single-linkage or 
nearest-neighbour clustering, the distance between two clusters is the distance 
between the nearest pair of objects, one from each cluster. In complete linkage or 
farthest neighbour clustering, the distance between two clusters is the distance 
between the farthest pair of objects, one from each cluster. The clustering process 
can be represented by a dendrogram. The dendrogram can show how the individual 
objects are successively merged at greater distances into larger and fewer clusters. 
All distinct clusters that have been generated at or below a certain user-defined 
distance are considered (see Fig. 4.2). In this example of complete linkage clustering, 
the distances between rs2103317, rs2354377 and rs1534612 are less than the user-
defined distance. So are the distances between rs7593150 and rs7579426.

The agglomerative algorithms can be described with the concept of nesting 
(Theodoridis and Koutroumbas, 2003). Let ℜ

1
 of k clusters and ℜ

2
 of r clusters be 

two clusters form in the clustering process, where r < k. When each cluster in ℜ
1
 is 

a subset of a set in ℜ
2
, then we say that ℜ

1
 is nested in ℜ

2
 and we denote this by 

ℜ
1
 ⊂ ℜ

2
. For example, let ℜ

1
 = { {x

2
, x

4
}, {x
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}, {x
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5
} } and ℜ

2
 = { {x

2
, x

4
}, {x

1
, 
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3
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5
} }, then we say that ℜ

1
 is nested in ℜ

2
. The hierarchy of the agglomerative 

algorithms is as follow. Let the initial clustering be &Re;
0
, the first clustering be 

ℜ
1
,…, and the final clustering be ℜ

N−1
. The hierarchy is ℜ

0
 ⊂ ℜ

1
 ⊂ … ⊂ ℜ

N−1
.

4.2.4  Clustering Algorithm with Minimax for Measuring 
Distances Between Clusters, and Graph Algorithm

A desirable property for a clustering algorithm, in the context of tag-SNP selection, 
would be that a cluster must contain at least one SNP (the tag SNP) that is no more 
than the merging distance from all the other SNPs from the same cluster. If this is 
the case, then by setting a cutoff merging distance of C, one can ensure that no SNP 
is further than C away from the tag SNP in its cluster. As said, neither of the methods 

Fig. 4.2 Sample illustrative dendrogram showing how seven SNPs are merged into three clusters 
at or below the cutoff merging distance
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proposed by Byng et al. (2003) is ideal, since the single-linkage method does not 
guarantee the existence of a tag SNP with distance less than C from all SNPs in the 
same cluster, while complete-linkage is too conservative in that all SNPs have dis-
tance under C from all other SNPs in the same cluster.

In order to achieve the desired property described above, we propose a new defi-
nition of the distance between two clusters, as follows:

1. For each SNP belonging to either cluster, find the maximum distance between it 
and all the other SNPs in the two clusters.

2. The smallest of these maximum distances is defined as the distance between the 
two clusters.

3. The corresponding SNP is defined as the tag SNP of the newly merged cluster.

We call this method minimax clustering, which is an agglomerative method. There 
is a parallel in topology in which the distance between two compact sets can be 
measured by a sup-inf metric known as Hausdorff distance (Barnsley, 1988; 
Wucklidge, 1996).

For comparison we have also implemented an algorithm based on the NP-com-
plete minimum dominating set of the set-cover problem in the graph theory, similar 
to the greedy algorithm developed by Carlson et al. (2004). The set of SNPs are the 
nodes of a graph, which are connected by edges where their corresponding SNPs 
have R2 > C. The objective is to find a subset of nodes such that that all nodes are 
connected directly to at least one SNP of that subset. The details of this heuristic 
algorithm can be found in Reuven and Zehavit (2004), Fujito (2001) and Johnson 
(1973). The one by Johnson (1973) is on the studies of the error bound of the algo-
rithm and the one by Fujito (2001) studies the case of weighted edges. Briefly, at 
the beginning of the method, all the SNPs belong to the untagged set. The algorithm 
picks the node with the largest number of nodes that are connected directly to it 
(without passing through any other nodes) from the untagged set. Then the SNPs 
inside the selected subset are deleted from the untagged set, and the next largest 
connected subset is chosen from the untagged set. The algorithm terminates when 
the untagged set becomes empty.

4.3 Experimental Results of CLUSTAG

4.3.1  Experimental Results of CLUSTAG and Results 
Comparisons

We implemented the complete linkage, minimax linkage and set cover algorithms 
in the program CLUSTAG. The program takes a file of R2 values produced, for 
example, by HAPLOVIEW (Barrett et al., 2005), and outputs a text file containing 
one row per SNP and the following columns (Fig. 4.3): (i) SNP name, (ii) cluster 
number, (iii) chromosomal position, (iv) minor allele frequency, (v) maximal distance 



(1 - R2) from other SNPs in the same cluster, and (vi) average distance (1 - R2) from 
other SNPs in the cluster. Both (v) and (vi) are useful for providing alternative 
SNPs that can serve as the tag SNP of the cluster, allowing some flexibility in the 
construction of multiplex SNP assays. A visual display (in html format) provides a 
representation of the SNPs in their chromosomal locations, color-labeled to indi-
cate cluster membership (Fig. 4.1). The tag SNP is highlighted and hyperlinked to 
a text box containing columns (i)–(vi) on the cluster.

We have compared the performance of the three implemented algorithms, using 
SNP data from the ENCODE regions of the HapMap project, according to three 
criteria:

1. Compression, the ratio of clusters to SNPs
2. Compactness, the average distance between a SNP and the tag SNP of its cluster 

(1 - R2), and
3. Run time

Our results show that the compression ratio is roughly equivalent for the set cover 
and minimax clustering algorithms but substantially higher for the complete 
linkage (Table 4.1). The minimax algorithm produces more compact clusters than 
the set cover algorithm (Table 4.2), but takes approximately twice as long to run. 
The run times of all three algorithms are expected to increase in proportion to the 
square of the number of SNPs.

The complexity of the clustering methods are of order O(n2). With the run time 
information in our table of several hundred SNPs and this complexity information, 

Fig. 4.3 Text output of the CLUSTAG
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the users can estimate roughly the expected run time for their samples before the 
program’s execution. The run time will not be an issue for data of several hundred 
to a hundred thousand SNPs. But, it will be a constraint when we are studying the 
whole genome at one time, when the size may be of several million SNPs. This is 
an area of further work as the HAPMAP project is producing the whole genome 
haplotype information.

We have also tested the different threshold values C for the chromosome 9 of the 
ENCODE data in the following two figures (Figs. 4.4 and 4.5). The values of 
the threshold C are 0.7, 0.75, 0.8, 0.85, 0.9 and 0.95, which cover the range of reason-
able threshold values. The results show that the compression ratio and the compactness 
are quite stable over the range from 0.7 to 0.8.

Table 4.1 Properties of three tag SNP selection algorithms, evaluated for ENCODE regions

Encode Region 
(SNP no.)

Compression Run time (s)

Complete Minimax Set cover Complete Minimax Set cover

2A (519) 0.277 0.245 0.247 3.94 5.42 3.20
2B (595) 0.291 0.255 0.261 5.44 6.92 4.03
4 (665) 0.242 0.211 0.209 6.53 13.30 5.25
7A (417) 0.314 0.281 0.281 2.56 3.39 2.00
7B (463) 0.186 0.166 0.171 3.53 5.03 2.84
7C (433) 0.240 0.217 0.215 2.38 3.28 1.80
8A (364) 0.269 0.245 0.245 2.39 2.94 1.83
9 (258) 0.360 0.318 0.314 1.47 1.74 0.98
12 (454) 0.260 0.227 0.227 2.69 3.69 2.03
18 (350) 0.283 0.254 0.254 2.17 2.81 1.64

Table 4.2 Compactness of three tag SNP selection algorithms, evaluated 
for ENCODE regions

Encode region 
(SNP no.)

Compactness

Complete Minimax Set cover

2A (519) 0.021 0.033 0.037
2B (595) 0.018 0.033 0.032
4 (665) 0.016 0.031 0.035
7A (417) 0.013 0.028 0.032
7B (463) 0.020 0.030 0.035
7C (433) 0.018 0.019 0.021
8A (364) 0.019 0.035 0.040
9 (258) 0.012 0.025 0.031
12 (454) 0.017 0.028 0.034
18 (350) 0.014 0.033 0.037



4.3.2 Practical Medical Case Study with CLUSTAG

We applied our tailor-made data mining algorithm to a medical problem in the 
HKU’s Genome Research Centre. There is a set of SNPs that are going to be clus-
tered by CLUSTAG. The CLUSTAG is employed for selecting the tag SNPs with 
the threshold at 0.8. Prior to the tagging step, there are two set of tag SNPs that have 
already been genotyped. The objective is to use the information provided by the 
previously genotyped SNPs in order to save the number of tag SNPs in this new 
round of genotyping.

The input files for the problem include the LD file of between all the SNP pairs, 
the SNP map file containing the SNP position and MAF information, and the two 
set of tag SNP that have been genotyped before (called it dataset 116 and dataset 
144). The total number of SNPs that are going to study in the current round is 816. 
In the dataset 144, there exist 72 tag SNP data that can be found be in the current 
round. In the dataset 116, that number is 58 tag SNPs.

In this SNP problem, there exists some SNP genotyping information that has 
been obtained through previous experiments. If the CLUSTAG is applied to all the 

Fig. 4.4 Compression ratios vs. different threshold values
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Fig. 4.5 Compactness vs. different threshold values
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data, the selected tag SNPs may not be those tag SNPs genotyped before. Instead, 
the following algorithm is employed to take advantage of this situation:

● All the SNPs in the current round are checked against the already-genotyped 
SNPs to see whether they can be tagged by the genotyped SNPs;

● For those SNPs that can be tagged by the genotyped SNPs, they are clustered 
into clusters in according to their similarity degree with the genotyped SNPs, 
and the genotyped SNPs are the default tag SNPs in the clustering process;

● For those SNPs that can not be tagged by the genotyped SNPs, they are formu-
lated for the CLUSTAG and be clustered among themselves into different clus-
ters. The tag SNPs selected here are the one that need to be genotyped.

It is found that the steps (1) and (2) can effectively reduce the number of SNPs that 
are needed for the clustering process to select tag SNP in step (3). For the dataset 
144, the 72 genotyped SNPs can tag 503 SNPs (including themselves) with similar-
ity values larger than the threshold values. There are only 241 SNPs left for the 
processing with CLUSTAG. And, for the 116 dataset, there are 468 SNPs that are 
tagged by the 58 genotyped SNPs and there are 290 SNPs left for the step (3) with 
the minimax algorithm of the CLUSTAG. Among the algorithms available in the 
CLUSTAG, it is shown that the minimax algorithm can produce the fewest number 
of tag SNPs while keeping the compactness at a reasonable degree. The compact-
ness number is for measuring how close the tag SNP and its cluster members are. 
In the step (3), with the already-genotyped dataset 116, a total of 84 tag SNPs are 
needed to tag the remaining SNPs in the current round. The average compactness 
for the clusters is 0.014. It means that the expected similarity between the tag SNP 
and its cluster members are 0.986. The running time for the step (3) is 2.297 s. For 
the dataset 144, a total of 74 SNPs are chosen as tag SNPs. The average compact-
ness is 0.0112 and the running time is 1.891 s.

It should be noted that the compactness for the clusters in the step (2) is gener-
ally of higher value than that in step (3). It is because, in the clustering process in 
step (2), the tag SNPs are by default chosen as those of the already-genotyped 
SNPs. For example, the average compactness for the clusters of dataset 116 is 
0.053, and that with the dataset 144 is 0.050.

In another genomic experiment, Brookes et al. (2006) have investigated the 
attention deficit hyperactivity disorder (ADHD) with the utilization of the 
CLUSTAG for tag-SNP selection. ADHD is a common neurodevelopmental disor-
der, which starts in early childhood and persists into adulthood in the majority of 
cases. The SNP genotyping experiment was by the Illumina high-throughput 
BeadArray technology. Data obtained with Illumina included a list of SNPs and 
their estimated genotype success rate for each gene. For tag SNPs selected from 
HapMap, it was fortunate that there often existed additional SNPs that were within 
a SNP cluster, and SNP with high estimate of success genotype rate could be 
selected in preference to one with a low rate.

Brookes et al. screened for association of the disease with the common genetic 
variations in the target regions. The regions are identified with the biological 



knowledge of the genes through their effect of regulation of dopamine, serotonin 
and norepinephrine neurotransmission. CLUSTAG algorithm has been applied in 
this study for selecting the tag SNPs. In order to ensure a high chance of detecting 
indirect association, a threshold for R2 of larger than 0.8 is used. The second method 
used in this study for tag-SNP selection is the newer algorithm in Haploview. The 
tag SNP recommendation by the CLUSTAG algorithm is preferentially selected, 
when the two methods recommended selection of two different SNPs that fell 
within the same cluster defined by CLUSTAG. This can avoid redundancy of the 
marker information. The details are available in their study. Through this gene-wide 
test, the disease was identified to have associations with TPH2, ARRB2, SYP, 
DAT1, ADRB2, HES1, MAOA and PNMT for further studies.

4.4  WCLUSTAG: Its Theory and Application for Functional 
and Linkage Disequilibrium Information

4.4.1  Motivations for Combining Functional and Linkage 
Disequilibrium Information in the Tag-SNP Selection

In the association studies for complex diseases, there are mainly two approaches for 
selecting the candidate polymorphisms. In the functional approach, the candidate 
polymorphisms are selected if they are found to cause a change in the amino acid 
sequence or gene expressions. The second approach, the positional approach, is to 
systematically screen polymorphisms in a particular genome region by using the 
linkage disequilibrium information with the disease-related functional variants. The 
functional approach is direct approach, while the positional approach is indirect 
approach. The algorithms and programs that we have described in the above sec-
tions are basically constructed with the positional approach. The candidate tag 
SNPs are selected for genotyping by utilizing the redundancy between near-by 
SNPs through the LD information. The purpose is to improve the efficiency of the 
analysis with minimal loss of information while reducing the genotyping costs at 
the same time.

In order to further utilize the genomic information for improving the tag-SNP 
selection efficiency, it would be desirable if the tag-SNP selection algorithm can 
take account of the functional information, as well as the LD information. In the 
human genome, it is well known that different kinds of polymorphisms have differ-
ent effects on the gene expressions and importance. The SNPs can attach more 
importance when their positions are within the coding regulatory regions. Similarly, 
for SNPs in the non-coding regions, they are attached with less biological impor-
tance. Furthermore, it is also desirable for the tag-SNP selection algorithm to take 
care of practical laboratory considerations like the readiness of the SNPs for assaying 
and the existing genotyped results in the previous laboratory experiments.

4.4 WCLUSTAG: Its Theory and Application for Functional and Linkage 67
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4.4.2  Constructions of the Asymmetric Distance 
Matrix for Clustering

The WCLUSTAG is developed in order to take care of the functional information 
and LD information, as well as the laboratory consideration. The development of 
the WCLUSTAG is based on the previous CLUSTAG, by adding the variable tag-
ging threshold and other functions, and the web-based interface. As described 
above, the CLUSTAG is of agglomerative hierarchical clustering and starts with the 
constructing of a square matrix of pair-wise distance between the objects to be 
clustered. An appropriate distance measure for the LD tagging is 1 − R2, where the 
second term is the square of the correlation between the SNPs. The clusters with 
the least inter-cluster distance are successively merged with each other. A cutoff 
merging distance, denoted by C, is required for the terminating of the algorithm and 
for ensuring that, in each cluster, it contains no SNP further than C away from the 
corresponding tag SNP.

In CLUSTAG, this cutoff merging distance C is the same for all the SNPs. In 
WCLUSTAG, the program has been modified so that the tagging threshold C can 
be specified by the user for each SNP, and can be different among the SNPs. 
Then, the factors like the positional and functional information, as well as the 
practical laboratory information, can be utilized for the assigning of tagging 
threshold values for SNPs individually. For example, for SNPs in the coding or 
regulatory regions, a high value of C (e.g. 0.8) can be assigned to these SNPs. On 
the other hand, for the other SNPs in the non-coding regions etc., a low value of 
C (like 0.4) can be given. With this modification, unlike the CLUSTAG, the 
square matrix of pair-wise distances between the objects becomes asymmetric for 
WCLUSTAG. For example, let a coding SNP have a C of 0.8, and another non-
coding SNP of C value 0.4, and let the R2 between these two SNPs be 0.5. It can 
be observed that the first SNP can serve as the tag SNP for the second. On the 
hand, the second SNP is not able to tag the first one. Thus, the WCLUSTAG has 
been built with the capability for handling of asymmetric distance matrix, such 
that the distance from object h to object k is not required to be the same as the 
distance from object k to object h.

With these considerations, the WCLUSTAG has been modified from CLUSTAG 
and works as followed:

● Firstly, a user-define value C is assigned for each SNP;
● Secondly, let C

k
 be the value of C for SNP k, and, let the distance from SNP h 

to SNP k be C
k
 − R

hk
2. Then, for C

k
 − R

hk
2 < 0, SNP h can serve as a tag SNP for 

SNP k.
● Thirdly, the minimax clustering method is applied with this new asymmetric 

distance matrix, and the cut-off merging distance is zero.

Then, cluster is formed for the case that there is a tag SNP that has a distance of 
zero or less with its cluster members respectively. The set-cover algorithm has 
undergone similar modifications in WCLUSTAG.



4.4.3 Handling of the Additional Genomic Information

As discussed above, it is desirable that the tag-selection algorithm can initially 
select all SNPs that have already been genotyped, and then remove these SNPs 
and the SNPs tagged by these SNPs from the next genotyping experiment. The 
algorithm will provide the laboratory users with more flexibility if the algorithm 
can exclude those SNPs that have problems with assay design etc. In order to 
achieve these properties, the algorithm has been subjected to the following modi-
fications, which can be done by changing the values of certain elements in the 
matrix similarities [R

hk
2].

For the case that the SNP t has already been genotyped, all the elements of 
column t in the matrix are set to zeros, except for the diagonal element of the 
column t which remains one. This setting can ensure that the SNP t can not be 
tagged by any other SNPs, and, therefore, it will be included as one of the tag 
SNPs in the clustering and graph algorithms. For the case that the SNP t has 
problem with assay design, all the elements of the row t in the matrix are set 
to zero. Therefore, the SNP t can never serve as one of the tag SNPs in the 
algorithms. There is one problem associated with these settings. With these 
settings, it does not ensure that all the problematic SNPs for assay design can 
be tagged in the algorithms. This is because some non-assayable SNPs can 
only be tagged by certain SNPs, while these SNPs may not be selected as the 
tag SNPs with the algorithms. This problem can be solved with the following 
further modification, which forces the selection of certain SNPs for tagging 
these non-assayable SNPs.

Firstly, for non-assayable SNPs that can not be tagged by any assayable SNP, 
as there does not exist any assayable tag SNP for them, they are listed and 
excluded from further processing. Then, the remaining non-assayable SNPs are 
subjected to following procedure to ensure that there will exist at least one tag 
SNP for each of them:

1. The set of already-genotyped SNPs (if existed) are checked if the SNPs there 
can tag the non-assayable SNPs. The SNPs of the non-assayable SNPs that can 
not be tagged by these already-genotyped SNPs are called the set of untagged 
non-assayable SNPs.

2. Each assayable SNPs (but not those already genotyped) is checked against the 
untagged non-assayable SNPs for the number of untagged non-assayable SNPs 
that each assayable SNP can tag. The one with the largest number is assigned as 
a SNP for forced selection, and the non-assayable SNPs that can be tagged by 
this SNP are removed from the set of untagged non-assayable SNPs.

3. For cases that there still exist untagged non-assayable SNPs, the above step (2) 
is repeated until there is no untagged non-assayable SNP.

The SNPs selected in the above steps (2) and (3) are treated in the same way as the 
SNPs that have been already genotyped, and are subjected to the same procedure 
for forced selection.
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4.5 WCLUSTAG Experimental Genomic Results

To illustrate the performance of the new algorithms, the CEPH sample genotype data 
from the International Haplotype Map Project was tested with the algorithms. The 
ENCODE regions were selected because genotyping were undertaken for all known 
SNPs in these regions. Intragenic regions were identified from the start and end points 
of the coding sequences for the 33K Ensembl genes in NCBI build 34. Intragenic 
SNPs are given a C weighting of 0.8, and other SNPs 0.4. The compression ratios (the 
number of tag-SNPs over the total number of SNPs) of the various ENCODE regions 
are compared with the original procedure which used a uniform C value of 0.8. Our 
results show that there can be a further 35.2% saving with our weighted minimax 
algorithm, and 35.9% with the set cover method (Table 4.3). We also explored the 
impact of using different weighting schemes. Some additional saving can be obtain-
ing by lowering the weights for either intragenic or other SNPs, although the com-
pression ratios remain in the region of 0.2 (Table 4.4). The average ratio of the SNPs 
in the intragenic regions to the overall SNPs is 32.3% in the dataset (Table 4.5).

Table 4.3 Properties of the tag SNP selection algorithms, weighted with 0.8 for gene 
regions and 0.4 for other regions

Encode region
(SNP no.)

Compression (Uniform) Compression (Weighted)

Complete Minimax Set cover Minimax Set cover

2A (519) 0.277 0.245 0.247 0.104 0.104
2B (595) 0.291 0.255 0.261 0.197 0.198
4 (665) 0.242 0.211 0.209 0.089 0.089
7A (417) 0.314 0.281 0.281 0.149 0.139
7B (463) 0.186 0.166 0.171 0.114 0.114
7C (433) 0.240 0.217 0.215 0.189 0.185
8A (364) 0.269 0.245 0.245 0.190 0.190
9 (258) 0.360 0.318 0.314 0.221 0.225
12 (454) 0.260 0.227 0.227 0.167 0.163
18 (350) 0.283 0.254 0.254 0.186 0.189
Average 0,267 2.237 0.238 0.154 0.153
Additional saving – – – 35.2% 35.9%

Table 4.4 Effect of weighting scheme (intragenic 
versus other SNPs) on the comparison ratios for 
tag-SNP selection algorithms in the Chromosome 
9 Encode data

Weighted ratio

Compression

Minimax Set cover

0.8:0.4 0.221 0.225

0.8:0.3 0.198 0.198
0.8:0.5 0.240 0.244
0.7:0.4 0.217 0.221
0.9:0.4 0.240 0.244
0.8:0.8 0.318 0.314



4.6 Result Discussions

With the necessary modifications, the WCLUSTAG can enable the users to select 
tag SNPs, with the advantage of both the functional approach and the positional 
approach. The choice of the threshold values can be made according to the budget 
for the disease data. Currently, the users can use the downloadable program version, 
which may be convenient for running scripts for multiple data sets. Or, the users 
can assess our web interface for importing their own genotype data. The web inter-
face also has the capability of downloading the HapMap data directly from its mir-
ror database for further computation.

There are factors that can affect the overall effectiveness of the tagging strategy. 
They include the functional information like the comprehensiveness of SNP maps, 
the quality of functional annotation of the genome, and the linkage disequilibrium 
information between the polymorphisms and the complex human diseases, and the 
underlying genetic architecture of the complex diseases. Many of these have not been 
fully understood by researchers and remain to be explored in the future studies.

Table 4.5 The number of SNPs in the intragenic regions 
and the other regions. The average ratio of the SNPs in the 
intragenic regions to the overall SNPs is 32.3%

SNPs no.
SNPs in intragenic 
regions

SNPs in other 
regions

chr2A 0 519
chr2B 273 322
chr4 0 665
chr7A 21 396
chr7B 159 304
chr7C 299 134
chr8A 203 161
chr9 66 192
chr12 180 274
chr18 167 183
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Chapter 5
Case Study II: Constrained Unidimensional 
Scaling for Linkage Disequilibrium Maps

With the advance of the genotyping single nucleotide polymorphisms (SNPs) in 
mass scale of high density in a candidate region of the human genome, the linkage 
disequilibrium analysis can offer a much higher resolution of the biological samples 
than the traditional linkage maps. The advantages of LD maps include the revealing 
of the fine scale recombination patterns, the facilitating of the optimal SNP/marker 
spacing, and the increasing of the power for localizing disease genes etc. The first 
LD maps were proposed by Maniatis and colleagues (Maniatis et al., 2002). The 
derivation of this LD map is parametric and requires the estimation of three coeffi-
cient parameters. Nevertheless, these estimated parameters are found to have large 
variances among different populations.

We have formulated this LD mapping problem as a constrained unidimensional 
scaling problem. Our method, which is directly based on the measurement of LD 
among SNPs, is non-parametric. Therefore it is different from LD maps derived 
from the given Malecot model. We have proposed the quadratic programming 
approach for solving this constrained unidimensional scaling problem. Different 
from the classical metric unidimensional scaling problem, the constrained problem 
is not an NP-hard combinatorial problem. The optimal solution is determined by 
using the quadratic programming solver.

5.1 Background

5.1.1 Linkage Analysis and Association Studies

5.1.1.1 Linkage Analysis

The linkage analysis has been using for the identification of the Mendelian diseases 
(Barnes and Gray, 2003). It can find out the correlation between the phenotypic 
patterns (like the disease state) and the genetic markers. The analysis is based on 
the fact that there are only a small number of recombination in the two to five gen-
eration families that are used for linkage analysis. Recombination is the process 
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that the chromosome undergoes breakage and exchanges segments of DNA during 
meiosis, whereby gametes (eggs and sperm) are produced (Alberts et al., 1994). 
These markers and diseases correlations can extend over many megabases (Mb). 
A linkage scanning of as few as several hundred simple tandem repeat (STR) etc., can 
give us enough coverage of the entire human genome.

Chromatids refer to the sister strands duplicated from the chromosomes during 
the early stage of meiosis (Sham, 1998). The resulting complex during the meiosis 
is called a tetrad. The region where the non-sister chromatids attach to each other is 
called chiasmata. The crossing over chromatids can be found in these chiasmata. 
From the observations of the meioses process, it is suggested that there is at least one 
chiasma in each chromosome. The result is that there is an obligatory crossover.

The genetic map distance between two loci is measured in units of Morgans. It 
is defined as the expected number of crossovers between the loci on a single chro-
matid during meiosis. In the meiosis process, each tetrad of the chromosome has 
four chromatids and each crossover involves two chromatids, so the genetic dis-
tance is also equal to half of the number of crossover in the tetrad. A smaller unit 
of the Morgans is the centiMorgan (cM), which is one hundred times smaller than 
a Morgan. Roughly, one centiMorgan corresponds to 1,000 kB.

The map length of an interval of the chromosome is defined as the expected 
number of crossovers in this interval for a single chromatid. The probability that 
two alleles at the two ends of the interval come from different parental chromosome 
is called the recombination fraction. The relationship between the map length and 
the recombination fraction can be described by a mathematical map function. 
Different map functions are used to describe this relationship. Among these functions, 
the Morgan map function is the simplest one. Let the probability of no chiasma 
between two loci be p

0
. The recombination fraction is given by: θ = (1 − p

0
)/2. 

Assume that there can only be one crossover in the chromosome segments. The 
probability of a chiasma in a segment of m map units is 2m, and we have θ = (1 − p

0
) 

/ 2 = [1 − (1 − 2m)]/2 = m for 0 ≤ m ≤ 1 / 2.
Another simple map function is the Haldane function. Haldane (1919) is the first 

scientist to consider the effects of two or more exchanges within a given genetic 
interval (Hawley and Walker, 2003). The Haldane function assumes that the crosso-
vers are not dependent on each other and thus their occurrences will follow the 
Poisson process. The probability of no chiasma in the interval of m map units, p

0
, 

is given by e−2m. Applying the Mather’s formula, we can have the Haldane map 
function: θ = (1 − p

0
)/2 = (1 − e−2m)/2. The inverse function is as follow: m = − 1 / 2 

ln(1 − 2θ). These mathematical map functions can be computed easily with com-
puter programs, like MAPFUN, which allow the conversion between map distance 
and recombination fraction.

5.1.1.2 Association Studies

The association studies work with the comparisons of the allele frequency in a disease 
population with that in a control population. Any significant differences between 



these two populations may indicate that the locus under consideration is potentially 
related with the disease phenotype. This association can be direct and indirect. In 
case of direct association, the polymorphism may have some functions that can 
cause/affect the disease. On the other hand, the polymorphism may not be func-
tional for the disease but is close enough to a polymorphism causing the disease. 
This co-occurring of alleles more frequently than by chance is named linkage dise-
quilibrium (LD), which is also often called “allelic association”. The existence of 
the linkage disequilibrium can be useful for mapping disease genes. This is because 
these two may be very close to each other. Thus, the LD analysis has the prospect 
of identifying and then narrowing candidate regions of medical importance.

Compared with the linkage analysis, the association studies have several advan-
tages. Firstly, the data can be obtained more easily than the extended pedigrees. 
Second, the power of detection for small genetic effects is greater. Spielman et al. 
(1993) showed that the insulin gene had strong association with type 2 diabetes, but 
with only very weak linkage. Collins et al (2004) also pointed out that linkage maps 
performed dissatisfactory for the common diseases because of its poor reproduci-
bility and low power. Lastly, the range of LD is usually tens of kilobases only and 
can allow intensive studies on a much finer scale. This availability of the data 
within much smaller interval enables us to search the genome in greater details.

5.1.1.3 Markers for Linkage Analysis and Association Studies

A genetic marker is said to be useful when it can be scanned easily and reliably in 
the laboratory and also be highly variable. The requirement of high variability is to 
ensure that unrelated individuals are likely to have different alleles. The classical 
markers are those that are employed in the analysis of Mendelian traits. When the 
trait is Mendelian, we can infer the underlying genotype form the phenotypic trait, 
and the phenotypic trait can act as an indicator of the underlying genotype. 
Examples of these classical markers include ABO blood groups, and colour blind-
ness. Other markers include the RELP markers, and Hypervariable markers etc.

The marker simple tandem repeat (STR) has been popular for the linkage analysis 
because its level of heterozygosity is high with increased information. SNPs have 
become a popular choice for association studies. It is because they are very abundant 
and of binary nature. Kruglyak and Nickerson (2001) estimated that there existed 7 
million SNPs in the human genome with minor allele frequency (MAF) greater than 
5%. Its binary nature can enable the genotyping process to become automated and 
high-throughput. Large-scale SNP discovery projects such as the SNP consortium 
(Altshuler et al., 2000) and the Hapmap project have been carrying out. The number 
of known SNPs has increased rapidly and such kind of data can be obtained from 
dbSNP etc. The dbSNP is a popular public polymorphism database.

For the studies of the genetic variations, different approaches of employing different 
markers have been developed, including Restriction Fragment Length Polymorphisms 
(RFLPs) (De Martinville et al., 1982), Amplified Fragment Length Polymorphisms 
(AFLP) (Vos et al., 1995), Microsatellites (or Short Tandem Repeat Sequences 
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(STRs) ) (Taylor et al., 1989), and Single-Nucleotide Polymorphisms. Among these 
approaches, it is generally accepted that SNPs are of the most importance because of 
its abundance, stability, and simplicity (Kwok, 2002). Furthermore, it is relatively 
easy for designing assay for SNPs and for the subsequent scoring of these markers. 
As a result, nowadays, in almost every field of the genomic analysis, there are appli-
cations with the SNPs, as the SNPs are very suitable for large-scale studies that 
require high accuracies and high-throughput outputs. These studies include pharma-
cogenomics, linkage studies, and candidate gene association studies.

5.1.1.4 Their Limitations

The linkage analysis has its limitations. When combining data from different fami-
lies, it will result in reduction of the genetic interval under study. More importantly, 
complex genetic diseases are usually caused by the combined effect of multiple pol-
ymorphisms in a number of genes and the identification of these genes by the link-
age analysis has been largely unsuccessful. It is because each gene makes a small 
contribution to disease susceptibility and these effects likely fall below the detection 
threshold by the analysis unless a huge sample sizes were available (Risch, 2000).

There are also difficulties for the association studies. In the association studies, 
a much more number of markers are required. It is guessed that probably 30,000 to 
300,000 markers (Collins et al., 1999) are required for an association study of the 
genome. The cost of scanning such a large amount of markers was high enough to 
limit the applications of the association studies in the past, while, it is expected that, 
with the advance of technologies today, the generation of high-density SNP maps 
can be efficiently realized (Antonellis et al., 2002). Association studies of this large 
scale have been becoming possible.

5.1.2  Constructing Linkage Disequilibrium Maps (LD Maps) 
with the Parametric Approach

5.1.2.1 Motivations for Constructing LD Maps

As said, the linkage maps can provide us with the information of how far two loci 
are from each other, in term of the number of recombination. Since the 1980s, these 
maps have played a key role for the positional cloning of many major disease genes. 
Nevertheless, when employing the linkage maps for common disease genes, where 
the individual phenotypic effect is smaller, the linkage methods are found not to 
perform well, and to be plagued by its low power. In face of these difficulties of 
linkage maps, their attention has focus on the exploitation of the allelic association 
(LD mapping). This is because the recent studies, like the one by Risch and 
Merikangas (1996), have shown that the power for detecting disease determinants 
of relatively small effect is larger with the allelic association, over the linkage.



Because of the above reasons, the linkage disequilibrium (LD) maps are developed 
with the aim that it can have similar features of the linkage maps, while at the same 
time with the capability that it can provide us with a much finer picture of the 
genome. It is because, as said previously, the SNPs are of much higher density than 
the traditional markers used in the genetic maps. The studies on the LD maps (Collins 
et al., 2004; Maniatis et al., 2005) suggest that, in both of these two different maps, 
we can have the similar abundant and narrow recombination hot spots. The LD maps 
can be used for the medical studies like positional cloning and evolution studies.

5.1.2.2 Theoretical Background for the Parametric LD Maps

The first LD map is proposed by Maniatis and his colleagues (Maniatis et al., 2002). 
It is the only common LD map up to date in our literature search. Maniatis et al were 
encouraged by the success of the genetic linkage maps. Maniatis et al developed the 
LD maps, basing on the population genetics theory for determining the expected 
association between the loci. Let the expected association between two diallelic loci 
be expressed by the probability p

t
, where 0 ≤ p

t
 ≤ 1, and t denotes the number of 

generation after founders. The association probability at generation t is:
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where 1/2N
t−1

 is the probability that a random haplotype in generation t is identical 
by descent from a specified haplotype in the t − 1 generation. N

t
 refers to the effec-

tive population size in the t generation, v is linear pressure toward linkage equilib-
rium from migration and mutation, and θ is the recombination frequency. This 
recurrence relationship can be shown to satisfy:

p L p L v Nt
t t

ii

t

− = − − − −
=

−

∏( )( ) ( ) ( )0
0

1

1 1 1 1
2q

where L is the association as the number of generations approach infinity. The vari-
able N here is for describing the stochastic variation, and v is used to make the allele 
frequencies keep realistically close to their present values.
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and
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When N is a constant, we can have p
t
 expressed as:
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where M is defined as:
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The Malecot equation is obtained by the assumption that the role of the above θt 
can be replaced with εd, where ε is assumed to be constant for a specified region, 
and d is the distance between loci, which can be measured in genetic scale or physi-
cal scale. The association at distance d can be expressed as:

p L Me Ld
d= − +−( )1 e

It should be noted that, in the Malecot model, there are four parameters that are 
required to be estimated. They are M, L, ε and S, the location of a disease locus as 
function of distance. This model can be found unsuitable when there are any sig-
nificant evolutionary variance, non-independence of samples, variable recombina-
tion, map error, or any other departure from the model’s assumption.

5.1.2.3 Constructing the Parametric LD Maps

A map interval can be defined with a pair of DNA sites, which may sometimes be 
called “markers”. The association probability between two marker alleles can be 
estimated from the theory of estimating the covariance D for a random sample of 
haplotypes:

p D
Q R= −( )1

where Q denotes the frequency of the rarest (youngest) allele, R is the frequency of 
the associate marker allele, and D refers to the absolute value of the difference 
between a haplotype frequency and its equilibrium value. The equilibrium values 
can be obtained as the product of allele frequencies.

The Malecot model can also provide us with the estimation of the association 
probability:

p L Me Ld
d= − +−( )1 e

Then, a natural measure for LD is the εd. Collins et al. (2004) pointed out that εd 
is not biased and can be much more accurately known than the θt in the previous 



population model. This parameter ε is non-negative and depends on the number of 
generations that the haplotypes need for approaching equilibrium. Its inverse, 1/ε, 
is termed by Collins et al. as the ‘swept radius’, which is the distance in kilobases 
that make M reduced by the factor e−1. The swept radius defines the extent of ‘use-
ful’ LD. Useful LD means the extent where LD is useful for gene mapping.

Maniatis et al. found that the parameter L can only be estimated inaccurately 
when computing over small distances, together with the estimation of the ε. 
It would become useful to decide an independent estimate of L, which is the mean 
value of p as e−εd approaches zero. The swept radius of the model can be estimated 
by fitting multiple pair-wise measures of association probability p into the Malecot 
model with composite likelihood. The mean swept radii are estimated to be in the 
range of 30–56 kb for Caucasians and Asians. That for the African-Americans is 
22–41 kb.

After obtaining the LD map lengths between each pairs of consecutive SNPs, a 
map can be simply constructed for these m SNPs. Let the length for the ith interval 
be ε

i
d

i
 LD units (LDU). The unit LDU is defined here to be equal to one swept 

radius. Then, the total LD length for the interval between the first and the last SNP 
is given by Se i id  LDU, and that for the physical distance is Sdi  kb. The ratio of 
these two distances can be used as a rough estimate of the ε in that region.

Collins et al. shown that the locations of the regions of intense recombination 
correspond closely to the steeper segments (‘steps’) on the LD map, whereas the 
cool recombination areas appear as flat segments (‘plateaus’) on the LD map. When 
the SNPs are separated with large distances, there is no useful LD and it can be said 
that these pairs are mostly uninformative. Thus, it can be viewed that there is a sliding 
window, within where the pairwise association data are informative for the particular 
map interval.

5.1.2.4 Advantages and Applications of the LD Maps

In the LD maps, different regions of medical interests can be shown conveniently 
and visually. A cold spot for LD is an interval in the LD map where LD declines 
rapidly with distance. When the LD maps are used to mirror the recombination, the 
cold spot for LD is a hot spot for recombination and vice versa. The hot spot for 
LD is the region in the LD map that appears as a flat region, which LD declines 
slowly against distance. It should be pointed out that the corresponding relationship 
between the LD and the recombination is not always so well defined, as there are 
other unpredictable genetic factors that may influence this corresponding.

Besides showing the recombination patterns in the LD map, the LD map can 
facilitate the optimal spacing of the tag SNPs. In order to have enough coverage of 
a genomic segment, it is required that there will be tag SNPs within each LD unit. 
In the study of the MHC class II region in UK, of Sammi and Zimbabwean popula-
tions, Kauppi et al. (2003) found that all the populations showed very similar LD 
patterns. This result was also supported by other studies of Lonjou et al. (2003) and 
Gabriel et al. (2002). Thus, Collins et al. suggested that a ‘standard’ LD map of the 
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populations is possible. Another advantage of the LD map is its increase of the 
power for disease gene localization. Collins et al. estimated in the simulation study 
that the mean power of using the kilobase map is only about 62% of the power of 
using the LDU map for the disease gene localization.

5.2 Theoretical Background for Non-parametric LD Maps

5.2.1  Formulating the Non-parametric LD Maps 
Problem as an Optimization Problem with 
Quadratic Objective Function

When two diallelic SNPs A and B are said to be linkage equilibrium, it means that 
their distributions are the same as Table 5.1 shown below:

where the p is the probability of obtaining an allele A from the pool of alleles A 
and a. Similarly, q is that of getting an allele B from the pool of alleles B and b. 
Usually, the probability p is used to denote the allele with the lowest probability and 
q for the second lowest one, so we have the following relationship: p ≤ q, p ≤ 0.5, 
q ≤ 0.5, p ≤ 1 − q.

When the two SNPs are in linkage disequilibrium (LD), it can be represented by 
the parameter d, which is defined as followed (Sham, 1998):

Here, d is defined in such a way that it remains non-negative all the time. When 
d is equal to zero, then the above table (Table 5.2) is reduced to that for the linkage 
equilibrium case.

The unit for measuring the scaled linkage disequilibrium is d’ and is defined by:

d
d

p q
’

( )
=

−1

Table 5.1 Distribution table for the two alleles A and B in linkage 
equilibrium

 Allele B Allele b Row sum

Allele A Pq p(1 – q) p
Allele a (1 – p)q (1 – p)(1 - q) (1 – p)
Column sum Q (1 – q) 1

Table 5.2 Distribution table for the two alleles A and B in linkage 
disequilibrium

 Allele B Allele b Row sum

Allele A pq + d p(1 – q) – d p
Allele a (1 – p)q – d (1 – p)(1 – q) + d (1 – p)
Column sum Q (1 – q) 1



As an example, let d = 0.1, p = 0.2 and q = 0.3, then d ’ .
. ( . ) .= − =0 1

0 2 1 0 3 0 7143.

From the theoretical population biology, it is known that the above d’ decays by a 
factor of 1 − θ per generation, where θ is the recombination fraction. Thus, we 
can have: −ln d’2 ∝ −ln(1−q). For small values of θ, it is approximate true that 
−lnd’2 ∝ q, and, therefore, −lnd’2 is approximately close to the genetic map distance 
measured in units of Morgan (Sham, 1998).

Because of the above property of the −lnd’2, it is used to measure the LD distance 
between each pair of SNPs. Consider the case of n SNPs, we can have the n-by-n 
distance matrix for representing the distances between each pair of these n SNPs, 
with the (i, j) element defined as [−lnd

ij
’2]. It is noted that this distance matrix is 

symmetric and has the diagonal elements equal to zeros. For applications in the LD 
maps, it is desirable to have the representation of these distances in one dimension. 
Also, the biological knowledge tells us that it is desirable to have the preservation of 
original ordering of the SNPs in the chromosome. This is because physically closer 
SNPs have smaller genetic map distances between them too. The objective of this 
scaling into one dimension is that this scaled distance values should be in agreement 
with the original distances in the n-by-n distance matrix as much as possible. This 
objective is very similar with the classical unidimensional scaling problem.

In the classical unidimensional scaling problem, it is to place n objects on the 
real line, such that the interpoint distances can best approximate the observed dis-
similarities between pairs of objects. It is well known that this problem is equivalent 
to an NP-hard combinatorial problem. Our constrained unidimensional scaling 
problem here is to place n objects in a given order on the real line, such that the 
interpoint distances best approximate the observed dissimilarities between pairs of 
objects. In the literature, researchers are interested in constrained multidimensional 
scaling problems. Lee (1984) used least squares scaling to allow not only for equal-
ity constraints but also inequality constraints.

5.2.2  Mathematical Formulation of the Objective Function 
for the LD Maps

Mathematically, the above constrained unidimensional scaling problem can be 
expressed with the objective function J defined as:

J z z z w d zn ij
j
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where d
ij
 denotes the original distance between the ith SNP and jth SNP in our dis-

tance matrix, and z
k
 denotes the scaled distance between the kth SNP and the (k + 1)th 

SNP. The weighting coefficients w
ij
 can be defined as, for example, the length of 

the 95% confidence interval of the distance −lnd
ij

’2. Mathematically,
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w
CIL CIHij

ij ij

=
− +

1
2 2ln ln

where (CIL
ij
 > 0.05 or CIL

ij
 < d

ij
’) and (CIH

ij
 > CIL

ij
); otherwise, w

ij
 = 0. CIL

ij
 rep-

resents the lower 95% confidence interval, and CIH
ij
 represents the upper 95% 

confidence interval of the estimated d
ij

’. When the 95% confidence interval is nar-
rower, it means that we know quite sure about the distance between the SNP pair. 
Thus, their weighing should be larger. It is also noted that w

ij
 is non-negative.

We also have the following constraints:

z k nk ≥ = −0 1 2 1, , , ,…

This is to ensure that the scaled distances are in consistence with the orderings of 
SNPs in the chromosome. The scaled distance between two non-consecutive SNPs 
is defined as the summation of the distances between all the consecutive SNP pairs 

that can be found between these two SNPs. Mathematically, z zj i k
k j

i

( )−
=

−

= ∑1

1

, where

i > j, and the new symbol z
j(i−1)

 is for representation of the scaled distance between 
SNP j and SNP (i - 1).

5.2.3  Constrained Unidimensional Scaling with Quadratic
Programming Model for LD Maps

It can be recognized that, with the above formulation of the objective function J, the 
above problem is the one with the quadratic optimization and the optimal solution 
of J can be obtained through quadratic programming techniques. Quadratic pro-
gramming refers to the finding of the optimal value of the problem with a quadratic 
objective function and linear constraints. Problems of quadratic programming are 
important in their own right (Nocedal and Wright, 1999). A formulation for the 
general quadratic program (QP) is as followed:

min ( )
x

T Tq x x Gx x d= +
1

2

subject to a
i
T x = b

i
, i ∈ E, and a

i
T x ≥ b

i
, i ∈ I. G is a symmetric n-by-n matrix, E 

and I are finite sets of indices. {a
i
}, where i∈E∪I, d and x are vectors of n 

elements.
The active-set methods are found to be effective for small- to median-scale QP 

problems (Nocedal and Wright, 1999). The method will start with making a guess 
of the optimal active set. If the guess is found incorrect during iteration, gradient 
and Lagrange multiplier information will be used to guide the dropping of one 
index from the current estimate and then a new index will be added. They are dif-
ferent from the simplex method, which requires the iterates to move from one vertex 
of the feasible region to another. In active-set methods, some iterates may lies at the 



interior of the feasible region. Primal, dual and primal-dual methods are the three 
active-set methods for solving QP. A disadvantage of these methods is that, in each 
iteration, there is usually only a single change and thus it may require many itera-
tion steps to converge on large-scale problems.

The gradient projection is designed with the mind that it can overcome the slow 
convergence problem of active set methods. And the gradient projection makes 
rapid changes to the active set. In each iteration, the steepest descent direction from 
the current point is searched. If there is a bound, the search direction is corrected 
so that it stays feasible. A local minimizer along this direction will then be located 
and is called Cauchy point. The working set is now the set of bound constraints that 
are active at the Cauchy point. Then, the sub-problem that has the active compo-
nents fixed will be solved to “explore” the face of the feasible box on which the 
Cauchy point lies.

Interior-point methods have the name because they require that, in each itera-
tion, the inequality constraints of the optimization problem have to be satisfied 
strictly. They can be applied for solving the QP problems. It has the advantages of 
simple description, relatively easy implementation and quite efficiency.

It can be observed that our quadratic objective function has the following 
property:

Property 5.1 The objective function value J is equal to zero if and only if

d dij k k
k i

j

= +
= −
∑ ( )1

1

for all i < j.
For our above constrained optimization problem, it can be re-written as the fol-

lowing least squares problem with non-negativity constraint:
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A
i
 is an (n−i)-by-(n−1) matrix given by [0

i
|T

i
], 0

i
 is an (n−i)-by-(i−1) zero matrix, 

T
i
 is an (n−i)-by-(n−i) Toeplitz matrix with its first column [1,1,…,1]T and its first 

row [1,0,…,0].
The MATLAB function that we employed for solving this least squares prob-

lems with non-negativity constraint is the lsqnonneg function. It uses the algorithm 
described by Lawson and Hanson (1974). In the algorithm, it will start with a set of 
possible basis vectors. Then, the associated dual vector will be computed, and let 
this dual vector be called lambda. The basis vector is selected with the one that 
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corresponds to the maximum value in lambda, and that can swap the lambda out of 
the basis in exchange for another possible candidate. The algorithm will continue 
until lambda becomes less than or equal to zero. Generally speaking, this algorithm 
is efficient for solving the optimization problem (MATLAB, 2005).

5.3 Applications of Non-parametric LD Maps in Genomics

The above quadratic programming method finds the scaled distances in each SNP 
intervals in terms of linkage disequilibrium units. The scaled distances are the basis 
for constructing linkage disequilibrium maps. The LD map is analogous to the link-
age map, nevertheless, with substantial difference by accommodating recombina-
tion events that have accumulated (Jeffreys et al., 2001). In the following sections, 
the differences and similarities with the linkage disequilibrium patterns between 
populations and chromosome regions are illuminated with our proposed method. 
The computational properties of our proposed method are also investigated.

5.3.1 Computational Complexity Study

The MATLAB quadratic programming solver is employed for obtaining the opti-
mal solution of this constrained unidimensional scaling problem. The SNP data is 
the ENCODE dataset from the HapMap project (30 October 2004) and is based on 
NCBI build34. The entries of the original distance matrix are obtained with running 
the program HAPLOVIEW on these ENCODE dataset and with a simple C script 
of transforming the d’

ij
 values into −ln d

i

,

j
2 values.

The results of Tables 5.3 and 5.4 are run on MATLAB program on the Linux 
platform of CPU Intel 3.2c with 1G memory. From the above tables, it is observed 
that the computational time for the above quadratic programming algorithm is of 
O(n4), and that the memory requirement for the inputs are of O(n3). The following 
figures (Figs. 5.1–5.4) show the scaled SNP positions against the original physical 

Table 5.3 Computational time (seconds) for segments of 
chromosome 9q34 of different length with quadratic pro-
gramming algorithm

TimeSNP No. 54 107 213 426
Time 0.18 2.15 85.87 1,747

Table 5.4 Computational time (seconds) for chromosomes 
where quadratic programming algorithm successfully

 chr7p15 chr8q24 chr9q34 chr18q12

SNPs No. 466 533 426 536
Q.P. Time 2,720 8,993 1,747 12,030



Fig. 5.1 Scaled SNP position vs. original SNP position for chr7p15 with the quadratic programming 
algorithm
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Fig. 5.2 Scaled SNP position vs. original SNP position for chr8q24 with the quadratic programming 
algorithm
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Fig. 5.3 Scaled SNP position vs. original SNP position for chr9q34 with the quadratic programming 
algorithm

Scaled Results with Optimal Scaling
6

5

4

3

S
ca

le
d 

S
N

P
 p

os
iti

on

2

1

0
1.27 1.271 1.272 1.273 1.274 1.275

Original SNP position
1.276

x 108

Fig. 5.4 Scaled SNP position vs. original SNP position for chr18q12 with the quadratic programming 
algorithm
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positions. From these graphs, we can be easily identified the hot recombination 
regions and cold recombination regions.

For other larger chromosome regions, like chromosome 12q12, which is the fifth 
smallest region in term of the number of SNPs and have 665 SNPs, the quadratic 
programming approach can not be run successfully with problems of the out of 
memory errors.

5.3.2  Genomic Results of LD Maps with Quadratic 
Programming Algorithm

The maps below are constructed with our proposed method for the different human 
genome regions. From the maps, it can be helpful for identifying informative and 
uninformative pairs of SNPs. For SNPs that are separated by large scaled distances, 
it means that there exist no useful LD and, as a result, these pairs are uninformative. 
The steeper segments on the linkage disequilibrium map correspond closely to the 
location of the recombination intense regions. On the other hand, the high fairly flat 
lands in the LD map correspond to the recombination cool areas.

To observe the linkage disequilibrium of the different populations, we also 
applied our algorithm to all the four different populations in the chromosome 9 of 
the Hapmap ENCODE dataset as an example. The following figures (Figs. 5.5–5.8) 
give us the scaled LD maps of these four different population samples, i.e., the 

Fig. 5.5 The scaled SNP position via the original SNP position, CEU samples
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Fig. 5.6 The scaled SNP position via the original SNP position, YRI samples
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Fig. 5.7 The scaled SNP position via the original SNP position, HCB samples
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scaled SNP position via the original SNP position. The four populations are CEU 
of 444 SNPs, YRI of 476 SNPs, HCB of 399 SNPs and JPT of 391 SNPs in the 
region of the chromosome 9 from the HapMap Project. The CEU population refers 
to the samples that were collected in U.S. residents with northern and western 
European ancestry by CEPH. The YRI refers to the samples of the Yoruba people 
of Ibadan, Nigeria. The HCB and JPT are the samples of Beijing, China and Tokyo, 
Japan. In the figures, the flat regions are called the cold-spot recombination regions, 
which mean that a recombination in the meiosis process seldom occurs. The steep 
regions in the figures are the hot-spot recombination regions, which mean that a 
recombination in the meiosis process occurs frequently.

In these four populations (CEU, YRI, HCB and JPT), 86.23, 85.26, 84.92 and 
87.69% of the total regions are cold-spot recombination regions respectively 
(defined here as the regions of zero LD distance with its neighboring SNPs). 
According to the above figures, we can observe that the positions of the cold-spot 
recombination regions in the four scaled LD maps from the four populations are 
about the same. Furthermore, we identify several hot-spot recombination regions in 
the chromosome interval between positions 127380000 and 127420000 for the four 
populations. We define a hot-spot recombination region to be a region where has 
nonzero LD distances with its neighborhood SNPs. The figure below (Fig. 5.9) 
depicts the zoomed scaled LD distances of the SNPs in these hot-spot recombination 
regions. Even though all of the four populations have about the same hot-spot 
recombination regions, their corresponding nonzero scaled LD distances appear in 
different chromosome positions. It is interesting to further investigate the relationship 
between these LD patterns and population demography.

Fig. 5.8 The scaled SNP position via the original SNP position, JPT samples
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Fig. 5.9 The scaled SNP position via the original SNP position in the zoomed hot-spot recombination 
region of chromosome interval between 127380000 and 127420000 for four population samples
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For comparison, the following figures (Fig. 5.10–5.13) give us the scaled SNP 
position via the cumulated LD distances with respect to the above Figs. 5.5–5.8 
respectively. We consider that all the sums of the cumulated LD distances are equal 
to 1 for the convenience of comparison. According to these figures, we see that the 
LD patterns of different populations have different scaled SNP position (i.e., scaled 
distances). For example, we observe that there is a big gap in the cumulated LD 
distance in JPT samples, but the corresponding scaled distances change is very 
small. Such plots of our scaled LD maps can give us more detailed comparisons of 
LD patterns with the scaled distances among different populations.

The following table (Table 5.5) lists the percentages of the overlapping of the 
cold-spot recombination regions between the different populations. It is observed 
that the pair of the HCB and the JPT populations has the highest percentage of over-
lapping of their cold-spot recombination regions (87.11%), whereas the pair of the 
CEU and the YRI populations has the lowest percentage (82.43%). The second table 
(Table 5.6) below lists the percentages of the overlapping of the hot-spot recombina-
tion regions between the different populations. It can be observed that the pair of the 
HCB and the JPT populations has again the highest percentage of overlapping of 
their hot recombination regions (43.05%), while the pair of the YRI and the JPT 
populations has the lowest percentage (18.75%). We remark that it is commonly 
believed that the genomes of the HCB and the JPT are very similar, while the 
genome of the YRI is quite different from those of the other populations.

It can also be observed that the overlapping of the hot-spot recombination 
regions is much less than that in the cold-spot recombination regions. This result is 



Fig. 5.10 The scaled SNP position via the cumulated LD distances, CEU samples
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Fig. 5.11 The scaled SNP position via the cumulated LD distances, YRI samples
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Scaled Results with Optimal Scaling
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Fig. 5.12 The scaled SNP position via the cumulated LD distances, HCB samples

Fig. 5.13 The scaled SNP position via the cumulated LD distances, JPT samples
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consistent with that in the Fig. 5.9. It suggests that the hot-spot locations are different 
among the population samples.

For comparison, the two figures (Figs. 5.14 and 5.15) below give the scaled LD 
maps with the parametric approach and with our non-parametric approach. The 
figures refer to the single nucleotide polymorphisms mapping from an 880 kb 
region flanking CYP2D6 (Hosking et al., 2002). A total of 1,018 Caucasians were 
genotyped for the 27 single nucleotide polymorphisms there, which were known to 
result in the recessive CYP2D6 poor drug metaboliser phenotype. We can observe 
that the basic shapes of both figures are similar with each other. The cold-spot 
regions and the hot-spot regions occur in similar regions of the chromosome. 
Nevertheless, it can also be observed that there are some small differences in the 
two maps. It may be interesting to further investigate the similarity and difference 
between these two approaches.

5.3.3  Construction of the Confidence Intervals 
for the Scaled Results

Another issue that we would like to study is how the sampling process in the 
Hapmap dataset affects linkage disequilibrium information among SNPs. The idea 
is to use bootstrap method for generating several LD maps to check their shapes. In 
this study, we employ 100 SNPs from the human genome position 127063383 to 

Table 5.5 Overlapping of the cold-spot recombination regions in 
the four populations

 Overlapping of the cold-spot recombination 
Populations regions (in percentage)

CEU and YRI 82.43%
CEU and HCB 83.25%
CEU and JPT 84.60%
YRI and HCB 84.91%
YRI and JPT 84.05%
HCB and JPT 87.11%

Table 5.6 Overlapping of the hot-spot recombination regions in the 
four populations

 Overlapping of the hot-spot recombination 
Populations regions (in percentage)

CEU and YRI 17.52%
CEU and HCB 31.37%
CEU and JPT 27.74%
YRI and HCB 33.33%
YRI and JPT 18.75%
HCB and JPT 43.06%
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127249267 for the demonstration. In the data set, we have 45 persons from the 
CHB populations. We apply the bootstrap method to generate several samples for 
the construction of the LD maps. A bootstrap sample is generated by random selection 
from the 45 persons with replacements. Since we do not want to create any new 

Fig. 5.14 The LD map constructed with the parametric method (Maniatis et al., 2005). Vertical 
line indicates the location of the locus at 525.3 kb
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Fig. 5.15 The LD map constructed with the quadratic programming algorithm
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genetic information, we do not mix the genotypes of the 45 persons in the construction 
of the bootstrap samples. In our test, a total of 30 bootstrap samples are constructed. 
Then the 95% confidence intervals are constructed from the scaled LD maps of 
these bootstrap samples. The figure below (Fig. 5.16) shows the mean curve of the 
LD map and its confidence intervals. For illustration, the LD map by using the 
original Hapmap data set is also displayed.

According to this figure, some positions of the 95% confidence intervals are 
larger, and some are thinner. In particular, the 95% confidence intervals in the hot-
spot recombination regions are thinner. We can also observe that the map with the 
original Hapmap data set is contained in the maps of the upper and lower 95% con-
fidence intervals. And, this LD map of the Hapmap data set is very similar with the 
mean LD map constructed with the bootstrap method. The average percentage dif-
ference between these two scaled LD maps is 5.92%. The only major difference 
between these two LD maps can be found in the small interval around the chromo-
some interval 127168000 to 127184000, where the LD map of the Hapmap data set 
is close to the bottom of the 95% confidence level. From the experimental results, 
it can be observed that the sampling process does not affect this chromosome region 
significantly, and that the LD maps can give us stable linkage disequilibrium 
information of the SNPs in this chromosome region.

Fig. 5.16 Scaled LD position with the upper and lower confidence intervals (95%), the mean 
position (with ‘o’) and the position of the original Hapmap data set (with ‘x’) via the original SNP 
position
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5.4  Developing of Alterative Approach 
with Iterative Algorithms

5.4.1 Mathematical Formulation of the Iterative Algorithms

Because of the large requirement for memory during the running time that may cause the 
out of memory problems, and the high computational time of the quadratic programming 
algorithm, the iterative algorithm is developed for solving this LD constrained unidimen-
sional scaling problem. We start the iteration with defining the initial values as

d di i i i, ,ln+ += −1
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2′

for i = 1,…,n-1. Then, we are going to update these values with the recursive algorithm:
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where the parameter t denotes the current number of iteration.
From the above table (Table 5.7) or from our updating algorithm, it can be 

observed that the computational complexity of the above iterative equation (1) is 
O(n4), and the memory requirement for the iterative algorithm is O(n2).

In order to simplify the computational process, the approximate iterative algo-
rithms are developed as followed:
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where the variable j_near is the defined as max(1,i−near), k_near as min(SNP no, 
i + near). The variable near is the number of the near-by SNPs that are going to be 
used in the approximation. The complexity for the approximation algorithm is O(n). 
We will call this approximate algorithm “iterative algorithm with near nearby SNPs’, 
and the original iterative algorithm “iterative algorithm with all nearby SNPs’.

Table 5.7 Computational time (seconds) for chromosomes with the iterative algorithm, 
compared with the quadratic programming algorithm

 chr7p15 chr8q24 chr9q34 chr18q12

SNPs No. 466 533 426 536
Q.P. Time 2,720 8,993 1,747 12,030
All Nearby SNPs Time 5,662 9,066 3,785  9,198



5.4.2  Experimental Genomic Results of LD Map Constructions 
with the Iterative Algorithms

5.4.2.1  Experimental Scaled Results for the Iterative Algorithm 
with All Nearby SNPs

Figs. 5.17–5.20 show us the scaled SNPs position against their original position 
with the iterative algorithm with all nearby SNPs for the chromosome regions 
chr7p15, chr8q24, chr9q34 and chr18q12. We can observe that the scaled positions 
are almost exactly the same as those from the quadratic programming algorithm. 
Thus, it suggests that both algorithms can find the optimal solutions for the con-
strained unidimensional scaling problem.

5.4.2.2 Computational Time Results for the Iterative Algorithms

As we have discussed in the previous section, the approximate iterative algorithms 
have been developed because the computational time for the iterative algorithm 
with all nearby SNPs are still of order O(n4). From the two tables below (Tables 
5.8 and 5.9) and from the counting of steps of the approximate iterative algorithms, 
we can find that the computational time is now of O(n). The memory requirement 
is still the same as that of the iterative algorithm with all nearby SNPs.

Fig. 5.17 Scaled SNP position vs. original SNP position for chr7p15 with the iterative algorithm 
of all nearby SNPs
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Fig. 5.18 Scaled SNP position vs. original SNP position for chr8q24 with the iterative algorithm 
of all nearby SNPs
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Fig. 5.19 Scaled SNP position vs. original SNP position for chr9q34 with the iterative algorithm 
of all nearby SNPs
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Fig. 5.20 Scaled SNP position vs. original SNP position for chr18q12 with the iterative algorithm 
of all nearby SNPs
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Table 5.8 Computational time (seconds) for chromosome regions (with SNP number) by the 
iterative algorithms with the number of nearby SNPs set at different values

 5 nearby 10 nearby 20 nearby 30 nearby All nearby

chr7p15 (466) 11.86 63.16 393 1,234 5,662
chr8q24 (533) 13.97 71.94 454 1,362 9,066
chr9q34 (426) 10.73 56.98 359 1,105 3,785
chr18q12 (536) 14.63 72.53 460 1,367 9,198

Table 5.9 Computational time (seconds) for different chromosomes with 20 nearby SNPs algo-
rithm (with the number referred to the number of SNPs in the test chromosome regions)

chr2
p16

chr2
q37

chr4
q26

chr7
p15

chr7
q21

chr7
q31

chr8
q24

chr9
q34

chr12
q12

chr18
q12

Number 1,050 1,062 1,379 466 1,029 1,112 533 426 665 536
Time  915  918 1,207 393  895  967 454 359 575 460

5.4.2.3 Convergence Rates of the Iterative Algorithm

The following four figures (Figs. 5.21–5.24) show us the convergence properties of 
the iterative algorithms with different nearby SNPs for the chromosome regions 
chr7p15, chr8q24, chr9q34 and chr18q12. We can observe that all the iterative 
algorithms converge fast. Generally, it only needs about 10 iterations for the relative 
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Fig. 5.21 Relative changes between iterations vs. number of the iterations for chr7p15 with the 
iterative algorithms with the nearby SNP number set at different values

Fig. 5.22 Relative changes between iterations vs. number of the iterations for chr8p24 with the 
iterative algorithms with the nearby SNP number set at different values



Fig. 5.23 Relative changes between iterations vs. number of the iterations for chr9q34 with the 
iterative algorithms with the nearby SNP number set at different values

Fig. 5.24 Relative changes between iterations vs. number of the iterations for chr18q12 with the 
iterative algorithms with the nearby SNP number set at different values
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Fig. 5.25 Relative changes between iterations vs. number of the iterations for chr2p16, chr2q37, 
chr4q26 with the iterative algorithms with 20 nearby SNPs

Fig. 5.26 Relative changes between iterations vs. number of the iterations for chr7q21, chr7q31, 
chr12q12 with the iterative algorithms with 20 nearby SNPs



changes to drop to a level close to zero. It is noted that, with a larger number of 
nearby SNPs, it usually has a larger initial relative changes.

The two figures (Fig. 5.25 and 5.26) below show us the convergence properties of 
the remaining six chromosome regions with the iterative algorithm of 20 nearby SNPs. 
Same as the previous four chromosome regions that we have already seen, the conver-
gence rates are fast and need only about 10 iterations for dropping close to zero.

5.4.2.4  Experimental Results for the Iterative Algorithms with Different 
Nearby SNPs

The figures below (Figs. 5.27–5.48) show us the scaled SNPs position results with 
the approximate iterative algorithms of different nearby SNPs. It can be observed 
that the iterative algorithms with different nearby SNP numbers and the quadratic 
programming algorithms are producing more or less similar patterns of hot and cold 
recombination regions. As we have seen previously, the iterative algorithm with all 
nearby SNPs is observed to produce the nearly the same results. The iterative algo-
rithms with less nearby SNPs are producing results where the hot recombination 
regions are slightly flatter than those of the all-nearby SNP iterative algorithm and 
the quadratic programming algorithm.

Fig. 5.27 Scaled SNP position vs. original SNP position for chr7p15 with the iterative algorithm 
of 5 nearby SNPs
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Fig. 5.28 Scaled SNP position vs. original SNP position for chr7p15 with the iterative algorithm 
of 10 nearby SNPs
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Fig. 5.29 Scaled SNP position vs. original SNP position for chr7p15 with the iterative algorithm 
of 20 nearby SNPs
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Fig. 5.30 Scaled SNP position vs. original SNP position for chr7p15 with the iterative algorithm 
of 30 nearby SNPs
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Fig. 5.31 Scaled SNP position vs. original SNP position for chr8q24 with the iterative algorithm 
of 5 nearby SNPs
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Fig. 5.32 Scaled SNP position vs. original SNP position for chr8q24 with the iterative algorithm 
of 10 nearby SNPs
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Fig. 5.33 Scaled SNP position vs. original SNP position for chr8q24 with the iterative algorithm 
of 20 nearby SNPs
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Fig. 5.34 Scaled SNP position vs. original SNP position for chr8q24 with the iterative algorithm 
of 30 nearby SNPs
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Fig. 5.35 Scaled SNP position vs. original SNP position for chr9q34 with the iterative algorithm 
of 5 nearby SNPs
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Fig. 5.36 Scaled SNP position vs. original SNP position for chr9q34 with the iterative algorithm 
of 10 nearby SNPs
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Fig. 5.37 Scaled SNP position vs. original SNP position for chr9q34 with the iterative algorithm 
of 20 nearby SNPs
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Fig. 5.38 Scaled SNP position vs. original SNP position for chr9q34 with the iterative algorithm 
of 30 nearby SNPs
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Fig. 5.39 Scaled SNP position vs. original SNP position for chr18q12 with the iterative algorithm 
of 5 nearby SNPs
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Fig. 5.40 Scaled SNP position vs. original SNP position for chr18q12 with the iterative algorithm 
of 10 nearby SNPs
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Fig. 5.41 Scaled SNP position vs. original SNP position for chr18q12 with the iterative algorithm 
of 20 nearby SNPs
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Fig. 5.42 Scaled SNP position vs. original SNP position for chr18q12 with the iterative algorithm 
of 30 nearby SNPs
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Fig. 5.43 Scaled SNP position vs. original SNP position for chr2p16
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Fig. 5.44 Scaled SNP position vs. original SNP position for chr2q37
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Fig. 5.45 Scaled SNP position vs. original SNP position for chr4q26
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Fig. 5.46 Scaled SNP position vs. original SNP position for chr7q21
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Fig. 5.47 Scaled SNP position vs. original SNP position for chr7q31
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5.5 Remarks and Discussions

The characters of the linkage disequilibrium patterns can be helpful for the infer-
ences of recombination. Combining them together, this will facilitate the search of 
signatures of recent selective sweeps across the human genome, for example, the 
regions that show more extensive linkage disequilibrium than predicted by the 
underlying recombination rate and which exhibit unusually low nucleotide diversity 
(Przeworski, 2002).

In this chapter, we have formulated and studied constrained unidimensional scal-
ing models for constructing this linkage disequilibrium map. The model require-
ment is to place the objects in a given order on the real line according to the 
available information about the SNPs. Numerical results are presented to demon-
strate the model for the application in linkage disequilibrium maps.

There are several further remarks that can be considered for this constrained 
unidimensional scaling modeling. As seen, even though the iterative algorithm 
approach is one of methods that can have faster speed and solve large-size problem, 
the least squares problems with non-negativity constraints can provide the optimal 
solution for the problem. In this least squares problem, it is expected that a more 
efficient solver can be designed and developed, because the matrix A is structured 
and W is a diagonal matrix. Therefore, the computational times can be reduced.

We can also note that this problem has been formulated with the error of the l
2
-norm. 

Instead, we can further investigate the properties of the error of the other l
p
-norm 

Fig. 5.48 Scaled SNP position vs. original SNP position for chr12q12
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(where 1 ≤ p < ∞) for the minimization objective function. Then, the minimization 
problem will become:

J z z z w di zn i j ij j
k j

i

k

p

( , , , )1 2 1

1

… − > =

−

= −Σ Σ

with the constraints:

z k nk ≥ = −0 1 2 1, , , , .…

For the case of (p = 1), the solution for the above problem can be formulated as the 
solution of a linear programming problem. For the case of (p > 1), this becomes a 
convex programming problem. These mathematical programming problems can be 
solved by interior point methods.

It may also be interesting to further investigate another variation on this unidi-
mensional scaling when the order of the objects with each of several subsets is 
known a priori. This information may be available from some previous genomic 
studies on the chromosome regions concerned or from the medical expert opinions 
and experience etc.
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Chapter 6
Case Study III: Hybrid PCA-NN Algorithms 
for Continuous Microarray Time Series

In this chapter, we describe about the hybrid models of the principal component 
analysis (PCA) and neural network (NN) for the continuous microarray gene expression 
time series. The main contribution of our work is to develop a methodology for 
modeling numerical gene expression time series. The PCA-NN prediction models 
are compared with other popular continuous prediction methods. The proposed 
model can give us the extracted features from the gene expressions time series with 
higher prediction accuracies. Therefore, the model can help practitioners to gain a 
better understanding of a cell cycle, and to find the dependency of genes, which is 
useful for drug discoveries. Based on the results of two public microarray datasets, 
the PCA-NN method outperforms the other continuous prediction methods. In the 
time series model, we adapt Akaike’s Information Criteria (AIC) tests and cross-
validation to select a suitable NN model to avoid the over-parameterized problem.

The outline of this chapter is as followed. In Section 6.1, we describe the back-
ground, like the neural network and the transformation algorithms, and their respective 
applications in the microarray analysis. In Section 6.2, we talk about the motivation 
for developing the PCA-NN algorithm. In Section 6.3, it is the data description of 
the public datasets used in our study. In Section 6.4, we describe the details of our 
proposed methodology and the result comparison of the different methods. In 
Section 6.5, we discuss about the results of our system and further integration that 
can be developed, basing on our experimental results.

6.1 Background

6.1.1 Neural Network Algorithms for Microarray Analysis

The function approximation capability of the neural network is one of the network’s 
major properties and advantages. With this property, the researchers can be assured 
that, provided that appropriate network structure has been employed, the neural 
network can approximate the real problem accurately. The objective of the function 
approximate can be formulated as finding function ℑ(.) such that:

Sio-long Ao, Data Mining and Applications in Genomics, 117
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118 6 Case Study III: Hybrid PCA-NN Algorithms

ℑ − <( ) ( )x f xk k ε

where e is a small positive number, a set of N different input points are denoted as 
{xk ∈ �p,k = 1,2,…,N}, a set of N output points {dk ∈ �q, k = 1,2,…,N}, and the 
actual nonlinear input-output mapping between x and d is denoted as: f(xk) = dk, 
where the function f(.) is unknown. The mapping function �:�p → �q should 
closely fulfills the relationship: �(xk) = dk, for k = 1, 2,…,N. The property of the 
function approximation by the neural network is clear with the following theorem 
of the Universal Approximation Theorem of the network.

Definition: The Universal Approximation Property is said to be satisfied when, 
with an appropriate number of neurons and optimal weight vector, a neural network 
can approximate any continuous function, on any compact subset CÌ �n of the 
input space, to an arbitrary level of accuracy.

Note: A set S Ì �n is called compact if it is closed and bound. A set is closed if 
and only if its complement in �n is open. A set S Ì �n is open if for every vector 
x ∈ S, there is an e-neighbourhood of x: N(x,e) = {z ∈ �n| �z − x�<e}, such that 
N(x,e)∈S. A set is bounded if there is r > 0 such that �x� < r for all x ∈ S.

Universal Approximation Theorem (Haykin, 1994): Let j (.) denote a bounded 
and monotone-increasing continuous function. Use I

p
 to denote the p-dimensional 

unit hypercube [0,1]p. Let C(I
p
) be the space of continuous functions on I

p
. For any 

function f ∈ C(I
p
) and e > 0, there exists an approximate function � (.) that satisfies:

ℑ − <( ,..., ) ( ,..., )x x f x xp p1 1 ε

for all {x
1
,…,x

p
}∈I

p
, where �(.) is defined as:

ℑ = −
⎛

⎝⎜
⎞

⎠⎟==
∑∑( , , )x x w xp i ij j i
j

p

i

M

1
11

… a j q

for i = 1, …, M and j = 1, …, p, where M is an integer, and α
i
, θ

i
, and ω

ij
 are sets 

of real constants.
Barron (1991, 1992) estimated that the mean integrated squared error between 

the target function f(.) and the estimated function &lm;(.) is bounded by:

O
C

M
O

M

N
Nf p

2⎛

⎝
⎜

⎞

⎠
⎟ +

⎛
⎝⎜

⎞
⎠⎟

log

where C
f
 is the first absolute moment of the Fourier magnitude distribution of the 

target function f(.), M is the total number of hidden nodes, p is the number of input 
nodes, and N is the number of training sets.

The multi-layer feedforward network is a member of supervised learning. In 
supervised learning, a training set (represented by an input vector x) and the corre-
sponding desired output vector d are presented to the network. The network is then 
trained to learn how to minimize the error between its actual output vector z and 
this desire output vector d (Huang et al., 2004).



The neural network was reported for its successful applications in the gene 
expression analysis. Herrero et al. (2001) applied neural network for clustering 
gene expression patterns. Peterson and Ringner (2003) analyzed tumor gene 
expression profiles with the network. Sawa and Ohno-Machado (2003) developed 
a neural network-based similarity index for clustering DNA microarray data. 
Predictions of TP53 gene sequence of values A, C, G and T were modeled with 
neural network in study (Spicker et al., 2002).

6.1.2 Transformation Algorithms for Microarray Analysis

6.1.2.1 Principal Component Analysis

Among the tools of the dimension reduction and transformation, the principal com-
ponent analysis (PCA) is a popular tool for many researchers. Its basic idea is to 
find the directions in the multidimensional vector space that contribute most to the 
variability of the data. The representation of data by the PCA consists of projecting 
the data onto the k-dimensional subspace according to

x F x A xt′ = =( )

where x´ is the vectors in the projected space, At is the transformation matrix which 
is formed by the k largest eigenvectors of the data matrix, x is the input data matrix. 
Let {x

1
,x

2
,…,x

n
} be the n samples of the input matrix x. The principal components 

and the transformation matrix can be obtained by minimizing the following sum of 
squared error:

J a x m a x xk hi i
i

k

h
h

n

( , ) ( )¢ ¢= + −
==
∑∑

11

2

where m is the sample mean, x
i
´ the i-th largest eigenvector of the co-variance 

matrix, and a
hi
 the projection of x

h
 to x

i
´.

The principal component analysis was applied to reduce the dimensionality of the 
gene expression data in studies (Hornquist et al., 2003; Bicciato et al., 2003; Taylor 
et al., 2002; Yeung and Ruzzo, 2001, etc.). The focuses are on the effective dimensional 
reduction by the PCA, the analysis of the compressed space and the assistance of the 
PCA for the classification and the clustering. For example, Hornquist et al. concentrated 
on the determination of the effective PCA dimensionality. Bicciato et al. described how 
to use the PCA to reduce the gene expression’s dimensional base for a better under-
standing of its basic biology and to have a better classification result. Taylor et al. 
applied the PCA to help understand the basis of plant genotype discrimination. Yeung 
and Ruzzo tested the efficiency of the PCA for clustering gene expression data.

Khan et al. (2001) applied the PCA and neural network for the classification of 
cancers using gene expression profiling. Khan’s purpose is on the classification and 
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the neural network is trained as a classifier for discrete outputs EWS, RMS, BL, and 
NB of the cancer types. The PCA was employed for the dimensionality reduction of 
the samples. This can avoid the “over-training” of the network (i.e. low number of 
parameters as compared to the number of samples). Similarly, we apply the PCA 
method in our modeling for dimensionality reduction and avoidance of over-fitting.

6.1.2.2 Independent Component Analysis

The independent component analysis (ICA) is a recently developed theory 
(Hyvärien et al., 2001; Comon, 1994 and Jutten and Herault, 1991). Its objective is 
to make the transformed entries mutually independent (Theodoridis and 
Koutroumbas, 2003). Mathematically, let the input samples denoted by x. The task 
is to determine an N-by-N invertible matrix W, so that the entries y(i), for i = 0, 1, 
…, N - 1, of the transformed vector: y = Wx, are mutually independent. Statistically, 
the requirement for the independence is a stronger condition that the condition of 
the PCA, which only requires the un-correlation of the components. For Gaussian 
random variables, these two conditions are equivalent to each other.

The original motivation for the development of the ICA is as followed: Assume 
that the input data vector x is indeed from a linear combination of statistically inde-
pendent components. An example is that, of several woofers located in different 
positions of a room, we have some detectors for checking the sound signals and 
then for determining the sources from these observed signals. Formally, we have 
x = Ay, where A is known as the mixing matrix of the components y. The task is to 
determine the de-mixing matrix W as the above paragraph, so that y = Wx, for 
recovering the components of the sources y.

Mathematically, the ICA transformation can work only for non-Gaussian proc-
esses, as it is ill-posed for Gaussian processes (Theodoridis and Koutroumbas, 
2003). Let the independent components y(i) be all Gaussian. It can be observed that 
a linear transformation of these components by any unitary matrix will also satisfy 
the requirement. Thus, PCA should be used in this case, as PCA can return a unique 
solution by setting a specific orthogonal structure in the transformation. Another 
condition for the proper working of ICA is that the mixing matrix A must be invert-
ible. For cases where A is a non-square l-by-N matrix, it is required that l must be 
larger than N and A has to be of full column rank.

The de-mixing matrix W can be estimated by minimizing the mutual informa-
tion between the transformed random variables. Define the associated entropy of 
y(i), H(y(i) ), as (Papoulis, 91):

H y i p y i p y i dy ii i( ( )) ( ( )) ln ( ( )) ( )= −∫
where p

i
(y(i) ) is the marginal probability distribution function of y(i). Then the 

mutual information I(y) can be obtained as:

I y H x W p y i p y i dy ii
i

N

i( ) ( ) ln det( ) ( ( )) ln ( ( )) ( )= − − + ∫∑
=

−

0

1



Techniques of the approximation of this mutual information I(y) and then subse-
quent minimization of the approximate function can be used for finding the solution 
of I(y) respective to W (Haykin, 1999; Hyvärien et al., 2001).

6.2 Motivations for the Hybrid PCA-NN Algorithms

Our motivation can be explained by looking at the information transfer mechanism 
among DNAs, mRNAs and proteins. Genes are used as templates for DNA synthesis. 
In the transcription process, genes are converted into the messenger RNA (mRNA). 
While the mRNA is subsequently translated to form proteins, some particular 
proteins can in turn regulate gene expression profiles. In other words, there exists a 
complex relationship between the current and future gene expressions values and 
their lags through this mechanism. Our work is to model this complex time series 
relationship by using a continuous numerical model. From our algorithm, we can 
know the influence of each gene on the principal components. With the knowledge 
of the disease gene, we can apply our algorithm to find out the influential genes in 
the development of such disease genes. Therefore, the suitable enhancing or inhib-
iting of the expression of these leading genes could lead to more effective control 
for the disease gene growth. This can certainly help us to gain a better understand-
ing of genes in a cell cycle, for example, which gene can be understood best for its 
future analysis.

Our work is different from other studies in bioinformatics, which like Khan’s 
(Khan et al., 2001), have successfully employed the Principal Component Analysis 
– Neural Network (PCA-NN) as a classifier of gene types. The first step of our 
proposed PCA-NN system is to form the input vectors for the time series analysis. 
They are the expression values of the time points in the previous stages of a cell 
cycle. Then, these input vectors are processed by the PCA. Thirdly, we use these 
post-processed vectors to feed the neural network predictors. To our best knowl-
edge, our proposed system is the first attempt to employ the principal component 
analysis and neural network to model the gene expression with continuous input 
and output values.

One advantage of using neural network is that it can give us continuous mode-
ling output. Khan has used the classification function of the network. Our work can 
be viewed as an extension of the discrete models to a continuous modeling of the 
gene expression. The continuous models have the advantage of resembling the real 
phenomenon better, as the more intricate aspects of gene regulation are dependent 
not on whether a gene is transcribed but rather on the level of transcription 
(Wolkenhauer, 2002). In the reverse engineering of the gene profiles, D’haeseleer 
et al. (1999) have studied the linear model for the network inference that can give 
us the prediction of the genes’ development. The model can be written as:

x t w x t bi ij j
j

J

i( ) ( )+ = +
=

∑1
1
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where x
i
 is the expression level of the ith gene, J is the number of gene studied. As 

pointed out in his research, it is possible to further enhance this model with the 
neural network. Our modeling can be regarded as a nonlinear generalization of this 
linear model. The PCA is employed here for feature extraction and we can see the 
system diagram in Fig. 6.1 below.

6.3 Data Description of Microarray Time Series Datasets

The first dataset is from the experiment of Spellman et al. (1998). It contains the 
yeast’s gene expression levels at different time points of the cell cycle (18 data 
points in one cell cycle). From the Spellman’s data set, there are totally 613 genes 
that do not have missing values and that show positive cell cycle regulation by 
periodicity and correlation algorithms. While the number of variables is large, the 
number of observations per variable is small (18 time points for each gene).

The average absolute percentage change of the genes between two adjacent time 
points is 94.92%. We will see later that this large volatility of expression levels 
makes prediction difficult. This value can be proven to be equivalent to the average 
percentage prediction error of the Naïve method. The Naïve method is one of the 

Fig. 6.1 System diagram of the PCA-NN model
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most basic while popular methods for time series analysis, and it simply uses the 
previous realized gene expression value to predict the next coming value. The 
underlying assumption is that trends and turning points cannot be predicted, and 
thus, the horizontal line extrapolation is used as the forecast. In other words, the 
method is equivalent to a random walk model, which shares the same assumption 
about the structure of the time series data.

We will also test the dataset of Cho et al. (1998). There are 17 time points for a 
total of 384 genes in this data set. The prediction error for the Naïve method is 
28.52%. A potential difficulty with applying the regression-based methods to the 
microarray data is the possible non-uniformly sampling of the time series data. This 
can be solved, for example, by regressing the gene expression levels against the 
various non-uniform time points. Then, extrapolated uniformly sampled time points 
can be obtained from the derived regression model. Details for the extrapolation 
method can be found in (Yukalov, 2000, etc.).

6.4 Methods and Results

The first step of our PCA-NN system is to form the input vectors for the time series 
analysis. They are the expression levels of the time points in the previous stages of 
the cell cycle. Then, these input vectors are processed by the PCA. Thirdly, we use 
these post-processed vectors to feed the neural network predictors. Their outputs 
are compared in the section of result comparison and we can see that the PCA-NN 
is the most suitable one among the methods we have compared.

6.4.1 Algorithms with Stand-Alone Neural Network

While the gene activities are highly complicated and nonlinear, the neural network 
is known for its non-linear capability. In this problem, it is used to check if this 
non-linear method can provide more accurate numerical forecasting. The typical 
three-layer neural network architecture is employed. The layers are the input layer, 
the hidden layer and the output layer. The inspiring idea for this structure is to 
mimic the working of our brain. The above layers correspond to the axons for 
inputs, synapses, soma, and axons for outputs.

In our computational experiment with the stand-alone neural network, the inputs 
x

i
’s will be the expression levels of the lags (of various length) of each gene in turn. 

And they will make the prediction of the current expression level (denoted by y) of 
the gene. Mathematically, these inputs x

i
’s are fed into the neural network structure 

with the output y as followed (Principe et al., 2000):
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where I denotes the number of inputs, J the number of hidden neurons, x
i
 the ith 

input, w(1) the weights between the input and hidden layers, w(2) the weights between 
the hidden and output layers.

The lag length of the input variable will be determined by the AIC method, as 
we will see later. In the PCA-NN experiment, the x

i
’s will denote the lags of each 

principal component value in turn. In our study, we have used the tansig activation 
function:

f x
e x

( ) =
+

−−

2

1
1

2

This is mathematically equivalent to the tanh(x), but runs faster in Matlab than the 
implementation of the tanh (Vogl et al., 1988). And, we have simply used the linear 
combination of the inputs for the output activation function.

Our results with the neural network show that the prediction is better than other 
methods compared but the errors are still high. It may be due to the lack of enough 
training data, and also due to the fact that the gene expression levels are changing 
so rapidly that the accurate forecasting is difficult to achieve. The sum of the abso-
lute errors of the prediction is 2,340 while the sum of the absolute gene expression 
values is 3,921 for the dataset 1. The absolute percentage error is found to be 
59.68% for a neural network of ten hidden neurons and a lag length of three previ-
ous values. This is still a large percentage error when compared with other time 
series prediction by the neural network, like the short-term financial time series 
forecasting. The absolute percentage error for the second dataset is 14.76%. We 
have studied the effects of using different network architectures and of changing the 
number of feeding terms for the network. To avoid over-training, we adopt the AIC 
tests and cross-validation procedure.

6.4.2  Hybrid Algorithms of Principal Component 
and Neural Network

As the prediction errors made by the stand-alone neural network are still large, the 
PCA is tested to see if it can assist the neural network for making more accurate pre-
diction. As said earlier, the PCA has been used successfully in the gene expression data 
analysis to reduce the dimensionality of the data set for better classification results.

We have applied the PCA to the whole spectrum of the genes in the two datasets 
separately. With the principal components obtained by Singular Value Decomposition 
(SVD) method, the gene expression matrix of dimension 613 x 18 was reduced to 
17 x 18. In the following Figs. 6.2 and 6.3, the first, second and third principal 
components are shown. We can see that there exist some more or less clear trends 
for the neural network to make the prediction. The other major components have 
similar property too. These principal components will serve as the input vectors for 
the neural networks. Our purpose of dimension reduction can be said successful.



Then, we are going to test its role in the assistance of the neural network’s pre-
diction performance. We employ the neural network to make prediction for each 
principal component. Then, the predictions are transformed back into the original 
vector space. In the computational experiment with Spellman’s dataset, the total 
absolute prediction error of the neural network in the training (with values at t-1, t-2 
and t-3 for predicting the current t-value and with ten hidden neurons) is found to 
be 1,087. The sum of the gene expression values is 3,921. The absolute percentage 
error is thus 27.77%, while that for the second dataset is 9.25%.

6.4.3  Results Comparison: Hybrid PCA-NN Models’
Performance and Other Existing Algorithms

The results from the Naïve prediction, the moving average prediction (MA), which 
takes the average of past three expression values for prediction, the autoregression 
(AR(1) ), the neural network prediction, the ICA-NN method and the PCA-NN 

Fig. 6.2 The first, second and third principal components vs. time points for Spellman’s dataset
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method are listed in Table 6.1. The naïve method simply used the previous expression 
value as the prediction value. The moving average prediction used the average of a 
certain number of previous expression values as a predictor. In fact, the Naïve 
method can be regarded as the moving average of 1-lag model. The first-order 
autoregression AR(1) is of the form:

x xt t t= +−r e1

where x
t
 is the expression level at time t, r the coefficient of x

t−1
. e

t
 is the white noise 

time series with E[e
t
] = 0, E[e

t
2] = s e 

2, and Cov[e
t
,e

x
] = 0 for all s ¹ t. These three 

methods are popular in continuous numerical predictions and their corresponding 
errors here are the in-sample errors. It can be observed that the NN model and the 
PCA-NN model are better than these methods. We will see later that the performance 
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Fig. 6.3 The first, second and third principal components vs. time points for Cho’s dataset

Table 6.1 Prediction results from the different methods

Results Naïve MA AR NN ICA-NN PCA-NN

Abs. error (1st set) 94.92% 125.87% 80.34% 75% 83.93% 51.31%
Abs. error (2nd set) 28.52% 39.16% 27.31% 22.52% 27.67% 12.91%



of the out-of-sample testing of the PCA-NN model is better than these methods’ 
in-sample testing. The in-sample tests mean that the data is used for both training 
and testing while the out-of-sample tests mean that the testing data has not been 
employed in the training process.

6.5  Analysis on the Network Structure 
and the Out-of-Sample Validations

We tested different combinations of the lag patterns for the training of the neural 
network with one hidden layer of 10 hidden neurons. Different network architec-
tures were checked for comparing their performances too.

In Table 6.2, the results of feeding the neural network of 10 hidden neurons with 
different input lag lengths are shown. NN1 represents network with the 1-lag model 
of value t-1, NN2 with the 2-lag model of values t-1 and t-2, NN3 with inputs t-1, t-2 
and t-3, NN4 with input t-1, t-2, t-3 and t-4, NN5 with input t-1, t-2, t-3, t-4 and t-5.

Table 6.3 shows us the performances of the different network architectures. All 
are of three-layer structure. NN_10 is with 10 hidden neurons, NN_5 with 5 hidden 
neurons, and NN_20 with 20 hidden neurons.

The AIC results are also listed in Tables 6.2–6.4. It was shown that Akaike’s 
criterion is asymptotically equivalent to the use of cross-validation (Principe et al., 
2000). Akaike’s information criterion (AIC) is defined as:

Table 6.2 Prediction results with different input lag lengths for stand-alone neural 
network

Results NN1 NN2 NN3 NN4 NN5

Abs. error (1st set) 66.23% 63.89% 59.68% 57.82% 55.85%
Abs. error (2nd set) 19.07% 16.68% 14.76% 13.42% 11.77%
AIC (1st set) 189.39 208.31 225.86 245.45 263.63
AIC (2nd set) 375.13 391.73 409.38 425.41 443.31

Table 6.3 Prediction results with different stand-alone 
neural network structures

Results NN_5 NN_10 NN_20

Abs. error (1st set) 68.63% 59.68% 47.47%
Abs. error (2nd set) 18.53% 14.76% 10.93%
AIC (1st set) 180.28 225.86 318.77
AIC (2nd set) 364.50 409.38 500.13

Table 6.4 Prediction results for PCA-NN method with different neural network structures

Results T1N5 T2N5 T3N5 T1N10 T2N10 T3N10

Abs. error (1st set) 67.63% 51.31% 46.85% 57.97% 44.22% 30.99%
Abs. error (2nd set) 22.02% 12.91% 14.65% 19.01% 8.68% 9.47%
AIC (1st set) 160.61 160.87 168.77 184.81 195.75 204.74
AIC (2nd set) 348.91 338.61 351.59 372.42 367.08 389.33
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AIC = T ln(residual sum of squares) + 2n (7)
where n is the number of parameters estimated, and T the number of usable observa-
tions (Enders, 1995). The first term of the above AIC equation is to measure the 
residual sum of squares, and the second term is a penalty for increasing the number 
of parameters in the model. While a more parsimonious model has the effect of reduc-
ing the residual sum of squares, the AIC test can give us a selection criterion that 
trades off a reduction in the sum of squares of the residuals for a more parsimonious 
model. We can use the AIC to aid in the selection of the most appropriate model, 
which is the model with the smallest AIC value (note that it can be negative).

From the AIC results, the architecture of the t-1 input with 5 hidden neurons is 
suggested, as it has the smallest AIC value. And, feeding the neural network of 5 
hidden neurons with input t-1, the error in the 1st data set is found to be 75% while 
that in the 2nd data set is 22.52%, which are better than the Naïve, the MA, and the 
AR methods.

Table 6.4 shows us the prediction results and the AIC values for the PCA-NN 
method with different network structures. T1 is for feeding the network with input t-
1 term only, T2 with input t-1 and t-2 terms, T3 with input t-1, t-1 and t-3 terms. N5 
refers to the network of 5 hidden neurons and N10 of 10 neurons. While for the data 
set 1 the AIC values of TIN5 and T2N5 are more or less the same, the AIC values 
of the second data set suggest clearly that the model T2N5 should be employed. This 
AIC result is slightly different from that of the stand-alone neural network.

Table 6.5 lists the results of the cross-validation of the PCA-NN method. The 
gene expression data is divided into two equal parts. In the first round, In-1 and 
Out-1 are the prediction errors with the first half as the in-sample data and the sec-
ond half as out-of-sample data. The In-2 and Out-2 are the results with the opposite 
partitions. From the table, we can find that the in-sample results are generally better 
than the out-of-sample results but they are more or less consistent and close to each 
other. Another observation is that the algorithm’s performance of both in-sample 
and out-of-sample testing is better than other methods’ in-sample prediction.

The Fig. 6.4 shows us the poorest prediction results of the Naïve method and the 
PCA-NN method for Cho’s dataset. Among the predictions with the Naïve method, 
the YDL227c gene expression data has the poorest result, with 65.54% average 
error. That for the PCA-NN method with the T3N10 model is the gene YHL028W, 
with 25.45% error. The best prediction result for Naïve method is the gene 
YDL198c, with 11.62% error. That for PCA-NN prediction result is the gene 
YBR104w, with only 1.87% error. We can observe that in both cases, the PCA-NN 
model performs much better that the Naïve method.

Table 6.5 Prediction results (Abs. percentage error of in-samples and 
out-of-sample cross-validation) for PCA-NN method with two inputs 
t-1 and t-2 for neural network structure of 5 hidden neurons

Results In-1 Out-1 In-2 Out-2

Spellman’s dataset 63.48% 70.86% 66.53% 74.04%
Cho’s dataset 19.91% 20.18% 16.02% 24.66%



Furthermore, we have tested the possibility of replacing the PCA with the ICA for the 
modeling. It is interesting to note that the results suggest that ICA does not supple-
ment well with neural network for the gene expression time series modeling here.

6.6 Result Discussions

We study the relationship of the gene expression level in the whole cell cycle from 
a different prospective. It is to test, given a certain genes expression profile, the 
possibility of making continuous predictions of the coming gene expression level 
changes. Our algorithm was applied to two popular gene expression datasets, and 
it is observed that PCA can assist the network to make more accurate predictions. 
The PCA-NN predictions have been compared with other popular continuous pre-
diction methods. The results from the Naïve prediction, moving average prediction 
(MA), autoregression (AR(1) ), neural network prediction, ICA-NN method and 
PCA-NN method are compared. The autoregression results suggest that the stationary 
time series model is not suitable for this microarray time series problem, while our 
algorithm is found to model the genomic network more accurately. This is because the 
genomic network is never truly linear and the neural network is found to be suitable 
for the gene modeling with continuous outputs.

Fig. 6.4 The poorest prediction cases made by Naïve method and PCA–NN method for Cho’s 
dataset (the top one is for the gene YDL227c and the bottom one for the gene YHL028w)
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Chapter 7
Discussions and Future Data Mining Projects

7.1 Tag-SNP Selection and Future Projects

7.1.1  Extension of the CLUSTAG to Work with Band 
Similarity Matrix

We have seen that, in the CLUSTAG, the clustering and set-cover algorithms are 
developed to obtain a set of tag SNPs that can represent all the known SNPs in a 
chromosomal region, subject to the constraint that all SNPs must have a squared 
correlation R2 > C with at least one tag SNP, where C is specified by the user. The 
computational time for the clustering algorithm is of O(n2). In the computing process, 
we also need to keep the similarity square matrix between the SNPs pairs.

In order to reduce the computational time and the space requirement, we have 
tested the implementation of the clustering and set cover methods with the band 
similarity matrix in our band similarity matrix version of the CLUSTAG. The 
rational for working with band similarity matrix is that, as we have seen in the dis-
cussion in the previous chapters, the correlation between the SNPs will decrease as 
the distance between them increases. Thus, it is reasonable to ignore the testing of 
the similarity of SNP pairs when they are far away from each other.

The above four tables (Tables 7.1–7.4) show us the results of the normal simi-
larity matrix (full) and the band similarity matrix (band). The number of clusters 
formed by these two kinds of matrix is more or less the same. We can observe that 
the number of tag SNPs in both cases are more or less the same, with the full 
matrix case requiring one less tag SNP in the sample chromosome regions. 
Nevertheless, as we have said, the computational time for the band matrix is much 
less than the full matrix case. It can be observed that, with the band rΛ2 matrix, the 
computational time is faster than full matrix by about 25%. The theoretical com-
putation time for the band matrix is O(n), while that for the full matrix is O(n2) as 
we have seen.

Sio-long Ao, Data Mining and Applications in Genomics, 131
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7.1.2 Potential Haplotype Tagging with the CLUSTAG

Our preliminary results below have shown support that the CLUSTAG can be 
extended to the clustering of the tag haplotypes instead of the tag SNPs. By work-
ing with haplotypes, we are extending the considerations of pair-wise SNPs in each 
step of the CLUSTAG to the considerations between multi-loci alleles (haplotypes) 
in each step. The comparison of working with multi-loci and single-locus alleles 
has been discussed previously.

From the test data of the segment of the chr3p from 47,000,000 to 47,100,000, 
there exist 26 SNPs. The haplotypes in this region can be found with the EM algo-
rithm etc. The correlation of these 325 haplotypes can be found with the methods 
like the Haploview. This pre-processing step has been done by the expert from the 
HKU’s Genome Research Centre. These pairs of correlations between the haplo-
types are fed into the CLUSTAG. Again, the threshold is set to 0.8 and we have 
found that a total of seven tag haplotypes are enough for tagging these haplotypes. 
The Fig. 7.1 below shows us the graphical result of the tagging haplotypes.

Table 7.1 Tagging results of chromosome 9 of full simi-
larity matrix vs. band similarity matrix (band width = 100 kb, 
Total SNPs = 440)

 Complete Minimax Graph

Tag SNP (full) 132 117 117
Tag SNP (band) 133 117 117

Table 7.2 Tagging results of chromosome 18 of full simi-
larity matrix vs. band similarity matrix (band width = 
100 kb, Total SNPs = 545)

 Complete Minimax Graph

Tag SNP (full) 124 115 115
Tag SNP (band) 125 116 116

Table 7.3 Tagging results of chromosome 8 of full simi-
larity matrix vs. band similarity matrix (band width = 
100 kb, Total SNPs = 539)

 Complete Minimax Graph

Tag SNP (full) 135 124 124
Tag SNP (band) 136 126 126

Table 7.4 Computational time for the CLUSTAG minimax algorithm (in seconds)

 Chromosome 8 Chromosome 9 Chromosome 18

Run time (full) 25.078 22.516 18.281
Run time (minimax) 17.750 16.782 13.703



In the above Table 7.5, the names of the haplotypes contain the following 
information:

1. The id of the first SNP
2. The relative position of the first SNP in the set of markers
3. The relative position of the last SNP in the set of markers

It can be observed that the ratio of the tagged haplotypes to the tag haplotypes is 
very high. This is because there is a lot of overlapping between the haplotypes so 
that the correlations between these haplotypes are very high. On the other hand, 
with only 26 SNP markers, there are 325 haplotypes estimated. Thus, there will be 
a computational problem if the number of SNPs increases, and skills from the parallel 
computing etc. may be needed for solving this problem.

Fig. 7.1 The results for the tagging haplotypes with the CLUSTAG
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7.1.3  Complex Disease Simulations and Analysis 
with CLUSTAG

One of the applications of the CLUSTAG is to employ the tag SNPs for the 
complex disease analysis. This involves the understanding of the genetic archi-
tecture of complex diseases, which has often not been fully understood yet. 
Thus, in the evaluation of the marker selection, the case-control samples of both 
the “simple disease” and “complex disease” are generated by the simulation 
methods. The case-control samples of the “simple disease” are simulated by 
selecting one of the available SNPs at random from the population data set. This 
procedure is repeated ten times with the dataset without replacement to simulate 
the ten simple diseases.

The case-control samples of the “complex disease” are simulated by selecting 
two of the available SNPs at random with replacement. One of the four different 
combination patterns “00”, “01”, “10”, and “11” is assumed to be the cause of the 
complex disease, where the symbol “0” and “1” represent the two different alleles. 
This procedure is repeated ten times with the dataset with replacement to simulate 
the ten simple diseases.

The data set for the simulated disease locus study is from the population CEU 
on Chr18:23717221..23737220 (build: NCBI B34, downloaded on 26 April, 2006). 
The LD data dump is from the direct HapMap LD output. This dataset has the LD 
information of 56 SNPs. There are 90 person samples in the dataset. The result with 
the minimax algorithm has 17 tag SNPs. The compression ratio is 17/56 = 30.36%, 
and the compactness of the clusters is 0.0016.

Three popular methods of disease analysis-the logistic regression, neural net-
work and decision tree, have been applied to the simulated data sets. The compari-
son results are listed in the tables below (Tables 7.6–7.9). The misclassification 
rates are the average values for the ten “simple diseases” and the ten “complex dis-
eases”. From these results, it can be observed that:

1. The logistic regression is more efficient for the analysis of the “simple diseases”.
2. The neural network is more efficient for the analysis of the “complex diseases”.

Table 7.5 The clustering details of the tagging haplo-
types with the CLUSTAG

Cluster Size Tagging SNP Avg. sim.

0 120 rs4078466:22:24 0.997483
1 200 rs936186:4:8 0.993985
2 1 rs9850277:24:25 1
3 1 rs936186:4:5 1
4 1 rs6783943:15:16 1
5 1 rs13078642:23:24 1
6 1 rs13078642:23:25 1



Table 7.7 Experimental results of “complex disease” with 60% training and 40% validation

Misclassification rate Logistic regression Neural network Decision tree

Training (orig.) 0.0389 0.0019 0.0260
Validation (orig.) 0.0444 0.0028 0.0306
Training (tag SNP) 0.0463 0.0167 0.0259
Validation (tag SNP) 0.0500 0.0111 0.0306

Table 7.8 Experimental results of “simple disease” with 40% training and 60% validation

Misclassification rate Logistic regression Neural network Decision tree

Training (orig.) 0.0028 0.0167 0.0028
Validation (orig.) 0 0.0074 0.0074
Testing (orig.) 0 0.0037 0.0037
Training (tag SNP) 0.0028 0.0083 0.0038
Validation (tag SNP) 0 0.0296 0.0074
Testing (tag SNP) 0 0.0370 0.0038

Table 7.9 Experimental results of “complex disease” with 40% training and 60% validation

Misclassification rate Logistic regression Neural network Decision tree

Training (orig.) 0.0333 0.0194 0.0333
Validation (orig.) 0.0333 0.0074 0.0333
Testing (orig.) 0.0519 0.0259 0.0519
Training (tag SNP) 0.0361 0.0167 0.0399
Validation (tag SNP) 0.0407 0.0296 0.0481
Testing (tag SNP) 0.0519 0.0593 0.0519

Table 7.6 Experimental results of “simple disease” with 60% training and 40% validation

Misclassification rate Logistic regression Neural network Decision tree

Training (orig.) 0.0019 0.0037 0.0056
Validation (orig.) 0 0.0083 0.0083
Training (tag SNP) 0.0019 0.0056 0.0056
Validation (tag SNP) 0 0.0028 0.0083

3. The minimax algorithm of the program CLUSTAG can effectively reduce the 
number of the SNPs genotyped, while the misclassification rates with the experi-
ments with the tag SNPs are still at low level.

4. The experiment results are relatively stable for the different partition ratios.

It would be interesting to further investigate the prediction results of these models 
with the CLUSTAG and WCLUSTAG for more complicated simulated disease 
models (Thornton-Wells et al., 2006).
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7.2 Algorithms for Non-parametric LD Maps Constructions

7.2.1 Localization of Disease Locus with LD Maps

Maniatis et al. (2005) applied their parametric LD Map for testing an 890 kb 
region flanking the CYP2D6 gene associate with poor drug-metabolizing activity. 
This is for refining the location of a causal mutation. With the LD map, they suc-
ceeded in locating the functional polymorphism at 14.9 kb from its true location 
with the result shown in Chapter 5. In Chapter 5, we have also shown that our 
quadratic programming approach can produce similar LD map. We observed that 
the basic shapes of both figures are similar with each other. The cold-spot regions 
and the hot-spot regions occur in similar regions of the chromosome. It is 
expected that the location of disease locus may also be achieved with the LD map 
of the quadratic programming approach.

A simple model with the scaled LD map for the location of disease is as fol-
lowed. Let there be N SNPs in one chromosome region, and their scaled LD dis-
tances have been computed to be S

1
,S

2
,…,S

n
 with ascending order. Assume that a 

disease D is caused by the mutation in one allele within this chromosome region. 
Similar with our scaled LD model, let w

iD
 be a positive weighting parameter that 

reflects the accuracy of the dissimilarity d
iD

 between the SNP i and the disease D. 
The key issue is to identify a scaled position X, starting from the scaled position of 
the first SNP S

1
, such that X can best approximate the observed dissimilarities 

between the SNP objects and the disease. Mathematically, the problem is to mini-
mize the objective function:

J X w X S d w X S diD
i

k

i iD iD
i k

n

i iD( ) ( ) ( )= − +[ ] + − −[ ]
= = +
∑ ∑

1
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where X is assumed to be contained within the scaled region S
k
 to S

k+1
. Similarly, for 

each value of k from 1 to n, we can obtain one minimum value of X for the J(X). The 
minimum of these J(X)’s is the scaled location of the X. This outlines a simple model 
for the localization of disease with our scaled LD map. More sophisticated models 
of localization of disease with our scaled LD map can be further investigated for the 
result comparison. Some research scientists are investigating this problem of the 
location of disease with our scaled method, and their computational results show that 
the localization of disease can also be achieved with our scaled LD map.

7.2.2 Other Future Projects

Besides the further investigation works that we have discussed above and in the 
discussion section of the chapter on non-parametric LD maps, we can also consider 
the different means of locating the hot recombination regions and cold recombination 



regions. For example, we can consider the possibility of applying the sliding window 
approach for locating the hot recombination and cold recombination regions math-
ematically. It is noted previously that the hot and cold recombination regions can 
be identified with our graphical outputs of the scaled SNP position.

For finding the hot recombination region (chr9q34) with moving windows of 2 
SNP intervals (3 SNPs), we have found that the position with the maximum scaled 
LD distance between consecutive SNPs for the quadratic programming algorithm 
is with the starting position at 214. It means that the interval position is from 214 
to 215. We can look at the names of these SNPs and locate their genetic location. 
The genetic interval for this interval is from 127,373,454 to 127,374,341. Similarly, 
the position with the maximum scaled LD distance between consecutive SNPs for 
the iterative algorithm with 20 nearby SNPs is also at 214. The interval position is 
from 214 to 215. And this is the same as the quadratic programming algorithm. We 
can see from the figure (Fig. 7.2) below that there are cases that these regions do 
not overlapping exactly. This is not strange as we have pointed out previously that 
the approximate iterative algorithms with different nearby SNPs usually produce 
LD maps with less sharpness in the hot recombination regions.127,294,178.

For locating the cold recombination region (chr9q34), with moving windows of 
100 SNP intervals (101 SNPs), we have found that the position with the minimum 

Fig. 7.2 Outputs of the moving window with 2 SNP intervals
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average scaled LD distance for the quadratic programming algorithm is with the 
starting position at 34. It means that the interval position is from 34 to 133. We can 
look at the names of these SNPs and locate their genetic location. The genetic 
interval for this interval is from 127,167,190 to 127294178. Similarly, the position 
with the minimum average scaled LD distance for the iterative algorithm with 20 
nearby SNPs is also at 47. The interval position is from 47 to 146. The genetic 
interval for this interval is from Genetic location = 12127,215,076o 12127,316,910 
This result is slightly different from that of the quadratic programming algorithm. 
And Fig. 7.3 shows us the overall moving results of these two algorithms.

7.3  Hybrid Models for Continuous Microarray Time Series 
Analysis and Future Projects

Our computational results can let us know the contribution of each gene to the 
principal components of the gene network. The predictability of each gene’s 
expression value can also be considered as a measure of how well its development 
can be understood. It is because we have considered the time series data of the gene 

Fig. 7.3 Outputs of the moving average with 100 SNP intervals



expression in its whole life cycle. A good prediction model means that we can 
identify the correct principal component for influencing the gene’s developments.

The neural network has been known for its non-linear function capability. Its 
prediction error is quite reasonable, which is better than the other methods like the 
Naïve method and the AR method. From the results of the two popular gene expres-
sion datasets, we can see that the PCA can assist the neural network to make more 
accurate predictions and the PCA-NN method outperforms others. A main diffi-
culty in our numeral prediction is that the time points in one cell cycle are short. 
The changes of the expression levels are very large between each time interval. In 
short, we need to do further work on this short multivariable time series analysis of 
the yeast’s cell cycle in order to further improve the prediction results. Our system 
can also be seen as a nonlinear gene inference network. It can give us more accurate 
model of the genome network, which is never truly linear, while a large-scale gene 
expression predictive model can obviate the need for an exact understanding of the 
system at the biochemical level (D’haeseleer et al., 1999).

Genetic algorithm is a promising tool for the optimization of the gene weight-
ings as pointed by Keedwell and Narayanan (2002). Similarly, we can regard our 
NN numerical prediction as the fitness function of the GA. We are going to select 
the most influential genes for each gene’s development in its life cycle with the GA. 
The experimental results here have clearly shown that our proposed PCA-NN out-
performs the other methods of linear regression, simple neural network and ICA-
NN etc. Thus, the suitable candidate to work with the GA will be the PCA-NN 
model, forming the hybrid GA-PCA-NN system. Another potential method is the 
ensemble learning, which have been successfully applied for the classification 
problems in microarray (for example, Tan and Gilbert, 2003). Our goal is to achieve 
a nonlinear gene network that can utilize the microarray data fully, with continuous 
inputs and continuous outputs, and that can provide us the details of the genes’ 
developmental dependencies. This can be helpful for drug development of the 
enhancing or inhibiting of a specific gene.
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